debian

Guide for Debian Maintainers

Osamu Aoki

January 9, 2026

Guide for Debian Maintainers
by Osamu Aoki

Copyright © 2014-2024 Osamu Aoki

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABIL-
ITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

This guide was made using the following previous documents as its reference:

« “Making a Debian Package (AKA the Debmake Manual)”, copyright © 1997 Jaldhar Vyas.
* “The New-Maintainer’s Debian Packaging Howto”, copyright © 1997 Will Lowe.
« “Debian New Maintainers’ Guide”, copyright © 1998-2002 Josip Rodin, 2005-2017 Osamu Aoki,
2010 Craig Small, and 2010 Raphaél Hertzog.
The latest version of this guide should be available:

« in the “debmake-doc package” and
¢ at the “Debian Documentation web site”.

https://tracker.debian.org/pkg/debmake-doc
https://www.debian.org/doc/devel-manuals

Contents

Preface
Overview

Prerequisites

3.1 PeoplearoundDebian e e
3.2 Howtocontribute e e
3.3 Social dynamics of Debian L
3.4 Technicalreminders e e e e
3.5 Debiandocumentation e e e e
3.6 Helpresources e e e e
3.7 Archivesituation e e
3.8 Contribution approaches
3.9 Novice contributor and maintainer e

Tool Setups

4.1 Email Setup
42 MCSEIUP . . . o o o e e
4.3 gitsetup. e
44 quiltsetup e e e
4.5 devscriptssetup e e e
46 sbuildsetup
4.7 Persistentchrootsetup
4.8 gbpsetup e e
4.9 HTTP ProXy . . . o o v o e e e e e e e e e e e e e e e e e e
4.10 Private Debian repository e e e
4.11 Virtual machines e e e e
4.12 Local network with virtual machines L

Simple packaging

5.1 Packagingtarball
5.2 BIgPICIUIE o e
5.3 Whatisdebmake?
54 Whatisdebuild?
5.5 Step 1: Getthe upstream SOUICE o i v i i e e e e
5.6 Step 2: Generate template files with debmake
5.7 Step 3: Modification to the templatefiles L.
5.8 Step 4: Building package withdebuild0 oo oL
5.9 Step 3 (alternatives): Maodification to the upstream source
5.10 Patch by “diff -u” approach
5.11 Patch by dquilt approach
5.12 Patch by “dpkg-source --auto-commit” approach

Basics for packaging

6.1 Packagingworkflow
6.2 debhelper package
6.3 Package name and version
6.4 Native Debian package e
6.5 debianfrulesfile
6.6 debian/controlfile
6.7 debianichangelogfile
6.8 debian/copyrightfile
6.9 debian/patches/*files
6.10 debian/sourcelinclude-binariesfile L

CONTENTS

6.11 debian/watch file
6.12 debian/upstream/signing-key.asc file
6.13 debian/salsa-ci.yml file
6.14 Other debian/* files

Quality of packaging
7.1 Reformat debian/* files with wrap-and-sort
7.2 Validate debian/* files with debputy

Sanitization of the source

8.1 Fix with Files-Excluded
8.2 Fix with “debian/rules clean”
8.3 Fix with extend-diff-ignore
8.4 Fix with tar-ignore
8.5 Fix with “git clean -dfx”

More on packaging

9.1 Package customization
9.2 Customized debian/rules
9.3 Variables for debianl/rules
9.4 New upstream release
9.5 Manage patch queue with dquilt
9.6 Build commands
9.7 Note on sbuild
9.8 Special build cases
9.9 Upload orig.tar.gz
9.10 Skipped uploads
9.11 Bug reports

10 Advanced packaging

10.1 Historical perspective
10.2 Current trends
10.3 Note on build system
10.4 Continuous integration
10.5 Bootstrapping
10.6 Compiler hardening
10.7 Reproducible build

108 Substvar.
10.9 Library package
10.1QMultiarch
10.11Split of a Debian binary package
10.12Package split scenario and examples
10.13Multiarch library path
10.14Multiarch header file path
10.15Multiarch *.pc file path
10.164.ibrary symbols
10.1ibrary package name
10.18.ibrary transition
10.1%inNMU safe
10.2Mebugging information
10.212-dbgsym package
10.2xdebconfo oL

11 Packaging with git

11.1 Salsa repository
11.2 Salsa account setup
11.3 Salsa ClI service
11.4 Branch names

11.5 Patch unapplied Git repository

CONTENTS

11.6 Patch applied Gitrepository e e e e
11.7 Noteongbp e
11.8 Note ondgit
11.9 Patch by “gbp-pq” approach
11.10Manage patch queue withgbp-pgq L
11.11gbp import-dscs --debsnap L L
11.12Note on dgit-maint-debrebase workflow,
11.13Quasi-native Debian packaging

12 Tips
12.1 Buildunder UTF-8 e
12.2 UTF-8 CONVEISION o e e e e e e e e e e e e e e e e s
12.3 Hints for Debugging o o e

13 Tool usages
13.1debdiff
13.2dget
133 mk-origtargz L e
134 origtargz e
135 gitdeborig e
13.6 dpkg-source-b L
13.7 dpKg-SOUIrCe -X e
13.8debc e
13.9 pluparts e
13.AMBES

14 More Examples
14.1 Cherry-pick templates e
14.2 No Makefile (shell, CLI) e
14.3 Makefile (shell, CLI)
14.4 pyproject.toml (Python3, CLI)
14.5 Makefile (shell, GUI) e
14.6 pyproject.toml (Python3, GUI)
14.7 Makefile (single-binary package)
14.8 Makefile.in + configure (single-binary package)
14.9 Autotools (single-binary package)
14.10CMake (single-binary package)
14.11Autotools (multi-binary package)
14.12CMake (multi-binary package) e
14.13nternationalization
14.1Details e e

15 debmake(1) manpage

151 NAME . . o o
152 SYNOPSIS
153 DESCRIPTION

15.3.1 optional arguments: L e
15.4 EXAMPLES
15.5 HELPER PACKAGES e e
15.6 CAVEAT . . . o o
157 DEBUG
15.8 AUTHOR o
159 LICENSE
1I5.1BEE ALSO . . .

CONTENTS

16 debmake options 140
16.1 Shortcut options (-a, =i) e e e 140
16.2debmake-b e 140
16.3debmake-cc 141
16.4 Snapshot upstream tarball (-d, -t) L 142
16.5debmake-j e 142
16.6 debmake -k L 143
16.7 debmake -P e 143
16.8 debmake -T 143
16.9 debmake -X e 144

Abstract

This “Guide for Debian Maintainers” (2026-01-09) tutorial guide describes the building of the Debian
package to ordinary Debian users and prospective developers using the debmake command.
This guide focuses on the modern packaging style and comes with many simple examples.

POSIX shell script packaging

Python3 script packaging

C with Makefile/Autotools/CMake
« multiple binary packages with shared library etc.

This “Guide for Debian Maintainers” can be considered as the successor to the “Debian New Main-
tainers’ Guide”.

Chapter 1

Preface

If you are a somewhat experienced Debian user 1, you may have encountered the following situations:
« You wish to install a certain software package not yet found in the Debian archive.
* You wish to update a Debian package with the newer upstream release.
« You wish to fix bugs of a Debian package with some patches.

If you want to create a Debian package to fulfill these needs and share your work with the community,
you are the target audience of this guide as a prospective Debian maintainer. 2 Welcome to the Debian
community.

Debian has many social and technical rules and conventions to follow, as it is a large volunteer
organization with a rich history. Debian has also developed an extensive array of packaging and archive
maintenance tools to build consistent sets of binary packages that address many technical objectives:

¢ packages have clearly specified package dependencies and patches and build correctly from scratch
in a clean build environment (“Section 6.6", “Section 6.9”, “Section 4.6")

e packages build across many architectures (“Section 9.3")

« builds are reproducible (“Section 10.7")

e multiarch is supported (“Section 10.10")

 bootstrapping new architectures is possible (“Section 10.5")

« builds use specific compiler flags to harden security (“Section 10.6")

« packages are split optimally into multiple binary packages (“Section 10.11")

« library names and contents are managed to ensure smooth transitions on upgrades (“Section 10.18")
« installations use interactive prompts correctly (if at all) (“Section 10.22")

e continuous integration is used to ensure quality (“Section 10.4")

These factors can be overwhelming for many new prospective Debian maintainers. This guide aims
to provide entry points to help them get started. It covers the following:

« What you should know before getting involved with Debian as a prospective maintainer.
* What it looks like to make a simple Debian package.

« What kind of rules exist for making the Debian package.

1You need to know a little about Unix programming, but you don't need to be an expert. You can learn about basic Debian
system handling from the “Debian Reference”. It also contains pointers for learning about Unix programming.

2If you're not interested in sharing the Debian package, you can address your local needs by compiling and installing the fixed
upstream source package into lusrl/locall.

https://www.debian.org/doc/user-manuals#quick-reference

CHAPTER 1. PREFACE

« Tips for making the Debian package with minimal effort.
« Examples of making Debian packages in typical scenarios.

The author recognized the limitations of updating the original “New Maintainers’ Guide” with the dh-
make package and decided to create an alternative tool with accompanying documentation to address
modern requirements such as multi-arch. This resulted in the debmake package, initially released as
version 4.0 in 2013. The current debmake version is 4.5.1. It comes with this updated “Guide for Debian
Maintainers” in the debmake-doc package (version: 1.23-2). (In 2016, dh-make was ported from Perl
to Python with updated features.)

Many chores and tips have been integrated into the debmake command allowing this guide to be
terse. This guide also offers many packaging examples for you to get started.

Caution

It takes many hours to properly create and maintain Debian packages. The De-
bian maintainer must be both technically competent and diligent to take up
this challenge.

Some important topics are explained in detail. While some may seem irrelevant to you, please be
patient. Certain corner cases are omitted, and some topics are only covered through external references.
These are intentional choices to keep this guide simple and maintainable.

https://www.debian.org/doc/manuals/debmake-doc/
https://www.debian.org/doc/manuals/debmake-doc/

Chapter 2

Overview

The Debian packaging of the package-1.0.tar.gz, containing a simple C source following the “GNU Cod-
ing Standards” and “FHS", can be done with the debmake command as follows.

$ tar -xvzf package-1.0.tar.gz
$ cd package-1.0
$ debmake
. Make manual adjustments of generated configuration files
$ debuild

If manual adjustments of generated configuration files are skipped, the generated binary package
lacks meaningful package description but still functions well under the dpkg command to be used for
your local deployment.

Caution

files must be manually adjusted to their perfection to comply with the strict qual-
ity requirements of the Debian archive, if the generated package is intended for
general consumption.

: The debmake command only provides decent template files. These template

If you are new to Debian packaging, focus on understanding the overall process rather than worrying
about the details.

If you are familiar with Debian packaging, you'll notice that debmake is similar to the dh_make
command. This is because debmake is designed to replace the functionality historically provided by
dh_make. 1

The debmake command is designed with the following features:

* modern packaging style
- debian/copyright: “DEP-5" compliant
- debian/control: substvar support, multiarch support, multi binary packages, ...
- debian/rules: dh syntax, compiler hardening options, ...
« flexibility
— many options (see “Section 16.2”, “Chapter 15”, and “Chapter 16”)

¢ sane default actions

— execute non-stop with clean results
— generate the multiarch package, unless the -m option is explicitly specified.

— generate the non-native Debian package with the Debian source format “3.0 (quilt)”, unless
the -n option is explicitly specified.

1Before dh_make, the deb-make command was popular. The current debmake package starts its version from 4.0 to avoid
version conflicts with the obsolete debmake package, which provided the “deb-make” command.

https://www.gnu.org/prep/standards/
https://www.gnu.org/prep/standards/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://dep-team.pages.debian.net/deps/dep5/

CHAPTER 2. OVERVIEW

e extra utility
- verification of the debian/copyright file against the current source (see “Section 16.6")

The debmake command delegates most of the heavy lifting to its back-end packages: debhelper,
dpkg-dev, devscripts, sbuild, schroot, etc.

Tip

Ensure that you properly quote the arguments of the -b, -f, -1, and -w options to

protect them from shell interference.

The non-native Debian package is the normal Debian package.

The detailed log of all the package build examples in this document can be ob-

tained by following the instructions in “Section 14.14".

The generation of the debian/copyright file, and the outputs from the -c (see

“Section 16.3") and -k (see “Section 16.6") options involve heuristic operations
on the copyright and license information. They may produce some erroneous
results.

Chapter 3

Prerequisites

Here are the prerequisites you need to understand before getting involved with Debian.

3.1

People around Debian

There are several types of people interacting around Debian with different roles:

upstream author: the person who made the original program.
upstream maintainer: the person who currently maintains the program.
maintainer: the person making the Debian package of the program.

sponsor: a person who helps maintainers to upload packages to the official Debian package
archive (after checking their contents).

mentor: a person who helps novice maintainers with packaging etc.

Debian Developer (DD): a member of the Debian project with full upload rights to the official Debian
package archive.

Debian Maintainer (DM): a person with limited upload rights to the official Debian package archive.

Please note that you can’t become an official Debian Developer (DD) overnight, as it requires more
than just technical skills. Don't be discouraged by this. If your work is useful to others, you can still
upload your package either as a maintainer through a sponsor or as a Debian Maintainer.

Please note that you don't need to create new packages to become an official Debian Developer.
Contributing to existing packages can also provide a path to becoming an official Debian Developer.
There are many packages waiting for good maintainers (see “” Section 3.8”").

3.2

How to contribute

Please refer to the following to learn how to contribute to Debian:

L]

L]

“How can you help Debian?” (official)

“The Debian GNU/Linux FAQ, Chapter 13 - Contributing to the Debian Project” (semi-official)
“Debian Wiki, HelpDebian” (supplemental)

“Debian New Member site” (official)

“Debian Mentors FAQ” (supplemental)

https://www.debian.org/intro/help
https://www.debian.org/doc/manuals/debian-faq/contributing
https://wiki.debian.org/HelpDebian
https://nm.debian.org/
https://wiki.debian.org/DebianMentorsFaq

CHAPTER 3. PREREQUISITES 3.3. SOCIAL DYNAMICS OF DEBIAN

3.3 Social dynamics of Debian

Please understand Debian’s social dynamics to prepare yourself for interactions with Debian:
* We are all volunteers.

- You can't impose tasks on others.
- You should be self-motivated to do things.

« Friendly cooperation is the driving force.

- Your contribution should not over-strain others.
- Your contribution is valuable only when others appreciate it.

« Debian is not a school where you get automatic attention from teachers.

- You should be able to learn many things independently.
- Attention from other volunteers is a scarce resource.

« Debian is constantly improving.

- You are expected to make high quality packages.
- You should adapt yourself to change.

Since we focus only on the technical aspects of the packaging in the rest of this guide, please refer
to the following to understand the social dynamics of Debian:

« “Debian: 17 years of Free Software, "do-ocracy”, and democracy” (Introductory slides by the ex-
DPL)

3.4 Technical reminders

Here are some technical reminders to help other maintainers work on your package easily and effectively,
maximizing the output of Debian as a whole.

« Make your package easy to debug.

- Keep your package simple.
— Don't over-engineer your package.

» Keep your package well-documented.

- Use readable code style.
- Make comments in code.
- Format code consistently.
- Maintain the git repository 1 of the package.

Note

Debugging of software tends to consume more time than writing the initial working

software.

It is unwise to run your base system under the unstable suite, even for development purposes.

« Creation and verification of binary deb packages should use a minimal unstable chroot as de-
scribed in “Section 4.6".

1The overwhelming number of Debian maintainers use git over other VCS systems such as hg, bzr, etc.

http://upsilon.cc/~zack/talks/2011/20110321-taipei.pdf

CHAPTER 3. PREREQUISITES 3.5. DEBIAN DOCUMENTATION

« Basic interactive package development activities should use an unstable chroot as described in
“Section 4.7".

Note

network daemons, and system installer packages, should use the unstable suite

@ Advanced package development activities, such as testing full Desktop systems,
running under “virtualization”.

3.5 Debian documentation

Please make yourself ready to read the pertinent part of the latest Debian documentation to generate
perfect Debian packages:

* “Debian Policy Manual”
— The official “must follow” rules (https://www.debian.org/doc/devel-manuals#policy)
« “Debian Developer’s Reference”
— The official “best practice” document (https://www.debian.org/doc/devel-manuals#devref)
¢ “Guide for Debian Maintainers” — this guide
— A “tutorial reference” document (https://www.debian.org/doc/devel-manuals#debmake-doc)

All these documents are published on https://www.debian.org using the unstable suite versions of
corresponding Debian packages. If you wish to have local access to all these documents from your base
system, please consider using techniques such as “apt-pinning” and “chroot”.

If this guide contradicts the official Debian documentation, the official Debian documentation is cor-
rect. Please file a bug report on the debmake-doc package using the reportbug command.

Here are alternative tutorial documents, which you may read along with this guide:

« “Debian Packaging Tutorial”

- https://www.debian.org/doc/devel-manuals#packaging-tutorial
- https://packages.qa.debian.org/p/packaging-tutorial.html

¢ “Ubuntu Packaging Guide” (Ubuntu is Debian based.)
- http://packaging.ubuntu.com/html/
« “Debian New Maintainers’ Guide” (predecessor of this tutorial, deprecated)

- https://www.debian.org/doc/devel-manuals#maint-guide
- https://packages.qa.debian.org/m/maint-guide.html

Tip

When reading these, you may consider using the debmake command in place
of the dh_make command.

https://www.debian.org/doc/manuals/debian-reference/ch09.en.html#_multiple_desktop_systems
https://www.debian.org/doc/devel-manuals#policy
https://www.debian.org/doc/devel-manuals#devref
https://www.debian.org/doc/devel-manuals#debmake-doc
https://www.debian.org
https://www.debian.org/doc/manuals/debian-reference/ch02.en.html#_tweaking_candidate_version
https://en.wikipedia.org/wiki/Chroot
https://www.debian.org/doc/devel-manuals#packaging-tutorial
https://packages.qa.debian.org/p/packaging-tutorial.html
http://packaging.ubuntu.com/html/
https://www.debian.org/doc/devel-manuals#maint-guide
https://packages.qa.debian.org/m/maint-guide.html

CHAPTER 3. PREREQUISITES 3.6. HELP RESOURCES

3.6 Help resources

Before deciding to ask your question in a public forum, please do your part by reading the relevant
documentation:

« package information available through the aptitude, apt-cache, and dpkg commands.
« files in lusrishareldoclpackage for all pertinent packages.

e contents of man command for all pertinent commands.

« contents of info command for all pertinent commands.

« contents of “debian-mentors@lists.debian.org mailing list archive”.

¢ contents of “debian-devel@lists.debian.org mailing list archive”.

You can find your desired information effectively by using a well-formed search string such as "key-
word site:lists.debian.org” to limit the search domain of the web search engine.

Creating a small test package is a good way to learn the details of packaging. Inspecting existing
well-maintained packages is the best way to learn how other people make packages.

If you still have questions about the packaging, you can ask them interactively:

« debian-mentors@lists.debian.org mailing list. (This mailing list is for the novice.)

« debian-devel@lists.debian.org mailing list. (This mailing list is for the expert.)

* IRC such as #debian-mentors.

» Teams focusing on a specific set of packages. (Full list at https://wiki.debian.org/Teams)
¢ Language-specific mailing lists.

- “debian-devel-{french,italian,portuguese,spanish}@lists.debian.org”

- “debian-chinese-gb@lists.debian.org” (This mailing list is for general (Simplified) Chinese dis-
cussion.)

- “debian-devel@debian.or.jp”

More experienced Debian developers will gladly help you if you ask properly after making the required
efforts.

Caution

Debian development is a moving target. Some information found on the web may
be outdated, incorrect, or non-applicable. Please use such information carefully.

3.7 Archive situation

Please realize the situation of the Debian archive.
¢ Debian already has packages for most kinds of programs.

¢ The number of packages already in the Debian archive is several tens of times greater than that of
active maintainers.

¢ Unfortunately, some packages lack an appropriate level of attention by the maintainer.

https://lists.debian.org/debian-mentors/
https://lists.debian.org/debian-devel/
mailto:debian-mentors@lists.debian.org
mailto:debian-devel@lists.debian.org
https://www.debian.org/support#irc
https://wiki.debian.org/Teams
https://lists.debian.org/devel.html
https://lists.debian.org/debian-chinese-gb/
http://www.debian.or.jp/community/ml/openml.html#develML

CHAPTER 3. PREREQUISITES 3.8. CONTRIBUTION APPROACHES

Thus, contributions to packages already in the archive are far more appreciated (and more likely to
receive sponsorship for uploading) by other maintainers.

Tip

The wnpp-alert command from the devscripts package can check for installed

packages that are up for adoption or orphaned.

Tip

The how-can-i-help package can show opportunities for contributing to Debian

based on packages installed locally.

3.8 Contribution approaches

Here is pseudo-Python code for your contribution approaches to Debian with a program:

if exist_in_debian(program):
if is_team_maintained(program):
join_team(program)
if is_orphaned(program): # maintainer: Debian QA Group
adopt_it(program)
elif is_RFA(program): # Request for Adoption
adopt_it(program)
else:
if need_help(program):
contact_maintainer(program)
triaging_bugs(program)
preparing_QA_or_NMU_uploads(program)
else:
leave_it(program)
else: # new packages
if not is_good_program(program):
give_up_packaging(program)
elif not is_distributable(program):
give_up_packaging(program)
else: # worth packaging
if is_ITPed_by_others(program):
if need_help(program):
contact_ITPer_for_collaboration(program)
else:
leave_it_to_ITPer(program)
else: # really new
if is_applicable_team(program):
join_team(program)
if is_DFSG(program) and is_DFSG(dependency(program)):
file ITP(program, area="main") # This is Debian
elif is_DFSG(program):
file ITP(program, area="contrib") # This is not Debian
else: # non-DFSG
file_ITP(program, area="non-free") # This is not Debian
package_it_and_close_ITP(program)

Here:

« For exist_in_debian(), and is_team_maintained(); check:

CHAPTER 3. PREREQUISITES 3.9. NOVICE CONTRIBUTOR AND MAINTAINER

- the aptitude command
— “Debian packages” web page
— Debian wiki “Teams” page

* For is_orphaned(), is_RFA(), and is_ITPed_by_others(); check:

— The output of the wnpp-alert command.
- “Work-Needing and Prospective Packages”
- “Debian Bug report logs: Bugs in pseudo-package wnpp in unstable”

- “Debian Packages that Need Lovin
- “Browse wnpp bugs based on debtags”

« For is_good_program(), check:

The program should be useful.

The program should not introduce security and maintenance concerns to the Debian system.

The program should be well documented and its code needs to be understandable (i.e. not
obfuscated).

The program’s authors agree with the packaging and are amicable to Debian. 2

Foris_it_ DFSG(), and is_its_dependency_DFSG(); check:
- “Debian Free Software Guidelines” (DFSG).
e Foris_it_distributable(), check:
- The software must have a license and it should allow its distribution.

You either need to file an ITP or adopt a package to start working on it. See the “Debian Developer’s
Reference”:

* “5.1. New packages”.

« “5.9. Moving, removing, renaming, orphaning, adopting, and reintroducing packages”.

3.9 Novice contributor and maintainer

The novice contributor and maintainer may wonder what to learn to start your contribution to Debian.
Here are my suggestions depending on your focus:

« Packaging

— Basics of the POSIX shell and make.
— Some rudimentary knowledge of Perl and Python.

» Translation

- Basics of how the PO based translation system works.
» Documentation

- Basics of text markups (XML, ReST, Wiki, ...).

The novice contributor and maintainer may wonder where to start your contribution to Debian. Here
are my suggestions depending on your skills:

* POSIX shell, Perl, and Python skills:

- Send patches to the Debian Installer.

2This is not the absolute requirement. The hostile upstream may become a major resource drain for us all. The friendly
upstream can be consulted to solve any problems with the program.

10

https://www.debian.org/distrib/packages
https://wiki.debian.org/Teams
https://www.debian.org/devel/wnpp/
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=wnpp;dist=unstable
https://wnpp.debian.net/
https://wnpp-by-tags.debian.net/
https://www.debian.org/social_contract#guidelines
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#newpackage
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#archive-manip

CHAPTER 3. PREREQUISITES 3.9. NOVICE CONTRIBUTOR AND MAINTAINER

- Send patches to the Debian packaging helper scripts such as devscripts, sbuild, schroot,
etc. mentioned in this document.

¢ C and C++ skills:

- Send patches to the packages with the required and important priorities.
¢ Non-English skills:
- Send patches to the PO file of the Debian Installer.

— Send patches to the PO file of the packages with the required and important priorities.
» Documentation skills:

- Update contents on “Debian Wiki".

- Send patches to the existing “Debian Documentation”.

These activities should give you good exposure to the other Debian people to establish your credibility.
The novice maintainer should avoid packaging programs with the high security exposure:

« setuid or setgid program

« daemon program
» program installed in the Isbin/ or lusr/sbin/ directories

When you gain more experience in packaging, you'll be able to package such programs.

11

https://wiki.debian.org/
https://www.debian.org/doc/

Chapter 4

Tool Setups

The build-essential package must be installed in the build environment.

The devscripts package should be installed in the development environment of the maintainer.

It is a good idea to install and set up all of the popular set of packages mentioned in this chapter.
These enable us to share the common baseline working environment, although these are not necessarily
absolute requirements.

Please also consider to install the tools mentioned in the “Overview of Debian Maintainer Tools” in
the “Debian Developer’s Reference”, as needed.

Caution

date with the latest packages on the system. Debian development is a moving
target. Please make sure to read the pertinent documentation and update the
configuration as needed.

: Tool setups presented here are only meant as an example and may not be up-to-

4.1 Email setup

Various Debian maintenance tools recognize your email address and name to use by the shell environ-
ment variables $SDEBEMAIL and $DEBFULLNAME.

Let’s set these environment variables by adding the following lines to ~/.bashrc 1.

Add to the ~/.bashrc file

DEBEMAIL="osamu@debian.org"
DEBFULLNAME="0samu Aoki"
export DEBEMAIL DEBFULLNAME

Note

% The above is for the author of this manual. The configuration and operation ex-
amples presented in this manual use these email address and name settings.

You must use your email address and name for your system.

1This assumes you are using Bash as your login shell. If you use some other login shell such as Z shell, use their corresponding
configuration files instead of ~/.bashrc.

12

https://www.debian.org/doc/manuals/developers-reference/tools.html

CHAPTER 4. TOOL SETUPS 4.2. MC SETUP

4.2 mc setup

The mc command offers very easy ways to manage files. It can open the binary deb file to check its
content by pressing the Enter key over the binary deb file. It uses the dpkg-deb command as its back-
end. Let’s set it up to support easy chdir as follows.

Add to the ~/.bashrc file

mc related

if [-f /usr/lib/mc/mc.sh]; then
. /usr/1lib/mc/mc.sh

fi

4.3 git setup

Nowadays, the git command is the essential tool to manage the source tree with history.
The global user configuration for the git command such as your name and email address can be set
in ~.gitconfig as follows.

$ git config --global user.name "Osamu Aoki"
$ git config --global user.email osamu@debian.org

If you are too accustomed to the CVS or Subversion commands, you may wish to set several com-
mand aliases as follows.

$ git config --global alias.ci "commit -a"
$ git config --global alias.co checkout

You can check your global configuration as follows.

$ git config --global --list

Tip

It is essential to use some GUI git tools like gitk or gitg to work effectively with
the history of the git repository.

4.4 quilt setup

The quilt command offers a basic method for recording modifications. For the Debian packaging, it
should be customized to record modifications in the debian/patches/ directory instead of its default
patches/ directory.

In order to avoid changing the behavior of the quilt command itself, let's create an alias dquilt for
the Debian packaging by adding the following lines to the ~/.bashrc file. The second line provides the
same shell completion feature of the quilt command to the dquilt command.

Add to the ~/.bashrc file

alias dquilt="quilt --quiltrc=${HOME}/.quiltrc-dpkg"
. /usr/share/bash-completion/completions/quilt
complete -F _quilt_completion $_quilt_complete_opt dquilt

Then let's create ~I.quiltrc-dpkg as follows.

d=.

while [! -d $d/debian -a "readlink -e $d° '= /];
do d=%$d/..; done

if [-d $d/debian] && [-z $QUILT_PATCHES]; then

13

CHAPTER 4. TOOL SETUPS 4.5. DEVSCRIPTS SETUP

if in Debian packaging tree with unset $QUILT_PATCHES
QUILT_PATCHES="debian/patches"
QUILT_PATCH_OPTS="--reject-format=unified"
QUILT _DIFF_ARGS="-p ab --no-timestamps --no-index --color=auto"
QUILT_REFRESH_ARGS="-p ab --no-timestamps --no-index"
QUILT_COLORS="diff_hdr=1;32:diff_add=1;34:diff_rem=1;31:diff_hunk=1;33:"
QUILT_COLORS="${QUILT_COLORS}diff_ctx=35:diff_cctx=33"
if ' [-d $d/debian/patches]; then mkdir $d/debian/patches; fi

fi

See quilt(1) and “How To Survive With Many Patches or Introduction to Quilt (quilt.html)” on how to
use the quilt command.

See “Section 5.9” for example usages.

Note that “gbp pq” is able to consume existing debian/patches, automate updating and modifying
the patches, and export them back into debian/patches, all without using quilt nor the need to learn or
configure quilt.

4.5 devscripts setup

The debsign command, included in the devscripts package, is used to sign the Debian package with
your private GPG key.

The debuild command, included in the devscripts package, builds the binary package and checks
it with the lintian command. It is useful to have verbose outputs from the lintian command.

You can set these up in ~/.devscripts as follows.

DEBUILD_DPKG_BUILDPACKAGE_OPTS="-i -I -us -uc"
DEBUILD_LINTIAN_OPTS="-i -I --show-overrides"
DEBSIGN_KEYID="Your_GPG_keyID"

The -i and -I options in DEBUILD_DPKG_BUILDPACKAGE_OPTS for the dpkg-source command
help rebuilding of Debian packages without extraneous contents (see “Chapter 8”).
Currently, an RSA key with 4096 bits is a good idea. See “Creating a new GPG key".

4.6 sbuild setup

The sbuild package provides a clean room (“chroot”) build environment. It offers this efficiently with the
help of schroot using the bind-mount feature of the modern Linux kernel.

Since it is the same build environment as the Debian’s buildd infrastructure, it is always up to date
and comes full of useful features.

It can be customized to offer following features:

« The schroot package to boost the chroot creation speed.
¢ The lintian package to find bugs in the package.

¢ The piuparts package to find bugs in the package.

The autopkgtest package to find bugs in the package.

The ccache package to boost the gcc speed. (optional)

The libeatmydatal package to boost the dpkg speed. (optional)

The parallel make to boost the build speed. (optional)

Let's set up shuild environment 2:

$ sudo apt install sbuild piuparts autopkgtest lintian
$ sudo apt install sbuild-debian-developer-setup
$ sudo sbuild-debian-developer-setup -s unstable

2Be careful since some older HOWTOs may use different chroot setups.

14

file:///usr/share/doc/quilt/quilt.html
https://manpages.debian.org/unstable/git-buildpackage/gbp-pq.1.en.html
https://keyring.debian.org/creating-key.html
https://en.wikipedia.org/wiki/Chroot
https://buildd.debian.org/

CHAPTER 4. TOOL SETUPS 4.6. SBUILD SETUP

Let's update your group membership to include sbuild and verify it:

$ newgrp -
$ id
uid=1000(<yourname>) gid=1000(<yourname>) groups=...,132(sbuild)

Here, “reboot of system” or “kill -TERM -1" can be used instead to update your group membership 3

Let's create the configuration file ~I.sbuildrc in line with recent Debian practice of “source-only-
upload” as:

cat >~/.sbuildrc << 'EOF'
HAHHHBHARHHH B HAH B HH R B H A HHH B H AR H A HH A HH B R R H AR AR R R AR
PACKAGE BUILD RELATED (source-only-upload as default)

g g g g g g g g g g g g g g g g]
HHH R R R R R R AR R R

-d

$distribution = 'unstable';
-A

$build_arch_all = 1;

-S

$build_source = 1;

--source-only-changes
$source_only_changes = 1;
-V

$verbose = 1;

g]
L A A A A R AR R

POST-BUILD RELATED (turn off functionality by setting variables to 0)

HAHHH B HAE R HH AR HH R R R R R R R R R R R R R R
$run_lintian = 1;

$lintian_opts = ['-i', '-I'];

$run_piuparts = 1;

$piuparts_opts = ['--schroot', 'unstable-amd64-sbuild'];

$run_autopkgtest = 1;

$autopkgtest_root_args = '';

$autopkgtest_opts = ['--', 'schroot', '%r-%a-sbuild'];

RABHHHHBHHBHBH AR HBH AR HBH AR HBH AR HBH B HBH AR HBH B HBH B AR BB H BB R B R RR S
PERL MAGIC

HHBHHHHBH R HBHHHHBH BB H BB BB B H B H B R R R R R R
1;

EOF

Note

binary packages, and security uploads where you can’t do source-only-upload
but are required to upload with binary packages. The above configuration needs
to be adjusted for those exceptional cases.

There are some exceptional cases such as NEW uploads, uploads with NEW

Following document assumes that sbuild is configured this way.
Edit this to your needs. Post-build tests can be turned on and off by assigning 1 or O to the corre-
sponding variables,

3Simply “logout and login under some modern GUI Desktop environment” may not update your group membership.

15

https://wiki.debian.org/SourceOnlyUpload
https://wiki.debian.org/SourceOnlyUpload
https://wiki.debian.org/SourceOnlyUpload

CHAPTER 4. TOOL SETUPS 4.7. PERSISTENT CHROOT SETUP

Warning

@ The optional customization may cause negative effects. In case of doubts, dis-
able them.

The parallel make may fail for some existing packages and may make the build

log difficult to read.

Many sbuild related hints are available at “Section9.7” and
“https://wiki.debian.org/sbuild” .

4.7 Persistent chroot setup

Note

Use of independent copied chroot filesystem prevents contaminating the source
chroot used by sbuild.

For building new experimental packages or for debugging buggy packages, let's setup dedicated
persistent chroot “source:unstable-amd64-desktop” by:

$ sudo cp -a /srv/chroot/unstable-amd64-sbuild /srv/chroot/unstable-amd64-desktop
$ sudo tee /etc/schroot/chroot.d/unstable-amd64-desktop-XXXXXX << EOF
[unstable-desktop]

description=Debian sid/amd64 persistent chroot

groups=root, sbuild

root-groups=root, shuild

profile=desktop

type=directory

directory=/srv/chroot/unstable-amd64-desktop

union-type=over lay

EOF

Here, desktop profile is used instead of sbuild profile. Please make sure to adjust letc/schroot/desktopl/fstab
to make package source accessible from inside of the chroot.
You can log into this chroot “source:unstable-amd64-desktop” by:

$ sudo schroot -c source:unstable-amd64-desktop

4.8 gbp setup

The git-buildpackage package offers the gbp(1) command. Its user configuration file is ~/.gbp.conf.

16

https://wiki.debian.org/sbuild

CHAPTER 4. TOOL SETUPS 4.9. HTTP PROXY

Configuration file for "gbp <command>"

[DEFAULT]

the default build command:

builder = sbuild

use pristine-tar:

pristine-tar = True

Use color when on a terminal, alternatives: on/true, off/false or auto
color = auto

4.9 HTTP proxy

You should set up a local HTTP caching proxy to save the bandwidth for the Debian package repository
access. There are several choices:

e Specialized HTTP caching proxy using the apt-cacher-ng package.
e Generic HTTP caching proxy (squid package) configured by squid-deb-proxy package

In order to use this HTTP proxy without manual configuration adjustment, it's a good idea to install
either auto-apt-proxy or squid-deb-proxy-client package to everywhere.

4.10 Private Debian repository

You can set up a private Debian package repository with the reprepro package.

4.11 Virtual machines

For testing GUI application, it is a good idea to have virtual machines. Install virt-manager and gemu-
kvm packages.

Use of chroot and virtual machines allows us not to update the whole host PC to the latest unstable
suite.

4.12 Local network with virtual machines

In order to access virtual machines easily over the local network, setting up multicast DNS service dis-
covery infrastructure by installing avahi-utils is a good idea.

For all running virtual machines and the host PC, we can use each host name appended with .local
for SSH to access each other.

17

Chapter 5

Simple packaging

There is an old Latin saying: “Longum iter est per praecepta, breve et efficax per exempla’ (“It's a
long way by the rules, but short and efficient with examples”).

5.1 Packaging tarball

Here is an example of creating a simple Debian package from a simple C source using the Makefile as
its build system.

Let’'s assume this upstream tarball to be debhello-0.0.tar.gz.

This type of source is meant to be installed as a non-system file as:

Basics for the install from the upstream tarball

$ tar -xzmf debhello-0.0.tar.gz
$ cd debhello-0.0

$ make

$ make install

Debian packaging requires changing this “make install” process to install files to the target system
image location instead of the normal location under lustr/local.

Note

Examples of creating a Debian package from other complicated build systems
are described in “Chapter 14",

5.2 Big picture

The big picture for building a single non-native Debian package from the upstream tarball debhello-
0.0.tar.gz can be summarized as:

« The maintainer obtains the upstream tarball debhello-0.0.tar.gz and untars its contents to the
debhello-0.0 directory.

« The debmake command debianizes the upstream source tree by adding template files only in the
debian directory.

- The debhello_0.0.orig.tar.gz symlink is created pointing to the debhello-0.0.tar.gz file.
— The maintainer customizes template files.

¢ The debuild command builds the binary package from the debianized source tree.

- debhello-0.0-1.debian.tar.xz is created containing the debian directory.

18

CHAPTER 5. SIMPLE PACKAGING 5.3. WHAT IS DEBMAKE?

Big picture of package building

$ tar -xzmf debhello-0.0.tar.gz
$ cd debhello-0.0
$ debmake
. manual customization
$ debuild

Tip

The debuild command in this and following examples may be substituted by

equivalent commands such as the sbuild command.

If the upstream tarball in the .tar.xz format is available, use it instead of the one
Sy in the .tar.gz and .tar.bz2 formats. The xz compression format offers the better

compression than the gzip and bzip2 compressions.

5.3 What is debmake?

Note

Actual packaging activities are often performed manually without using debmake
while referencing only existing similar packages and “Debian Policy Manual”.

The debmake command is the helper script for the Debian packaging. (“Chapter 15”)
« It creates good template files for the Debian packages.

« It always sets most of the obvious option states and values to reasonable defaults.
* It generates the upstream tarball and its required symlink if they are missing.

« It doesn’t overwrite the existing configuration files in the debian/ directory.

« It supports the multiarch package.

« It provides short extracted license texts as debian/copyright in decent accuracy to help license
review.

These features make Debian packaging with debmake simple and modern.

In retrospective, | created debmake to simplify this documentation. | consider debmake to be more-
or-less a demonstration session generator for tutorial purpose.

The debmake command isn’t the only helper script to make a Debian package. If you are interested
alternative packaging helper tools, please see:

« Debian wiki: “AutomaticPackagingTools” — Extensive comparison of packaging helper scripts

« Debian wiki: “CopyrightReviewTools” — Extensive comparison of copyright review helper scripts

19

https://www.debian.org/doc/debian-policy/
https://wiki.debian.org/AutomaticPackagingTools
https://wiki.debian.org/CopyrightReviewTools

CHAPTER 5. SIMPLE PACKAGING 5.4. WHAT IS DEBUILD?

5.4 What is debuild?

Here is a summary of commands similar to the debuild command.
* The debianl/rules file defines how the Debian binary package is built.

« The dpkg-buildpackage command is the official command to build the Debian binary package.
For normal binary build, it executes roughly:

- “dpkg-source --before-build” (apply Debian patches, unless they are already applied)
- “fakeroot debian/rules clean”

- “dpkg-source --build” (build the Debian source package)

- “fakeroot debian/rules build”

- “fakeroot debian/rules binary”

- “dpkg-genbuildinfo”’ (generate a *.buildinfo file)

- “dpkg-genchanges” (generate a *.changes file)

- “fakeroot debian/rules clean”

- “dpkg-source --after-build” (unapply Debian patches, if they are applied during --before-
build)

- “debsign” (sign the *.dsc and *.changes files)

% If you followed “Section 4.5” to set the -us and -uc options, this step is skipped and you
must run the debsign command manually.

* The debuild command is a wrapper script of the dpkg-buildpackage command to build the Debian
binary package under the proper environment variables.

« The sbuild command is a wrapper script to build the Debian binary package under the proper
chroot environment with the proper environment variables.

Note

See dpkg-buildpackage(1) for exact details.

5.5 Step 1: Get the upstream source

Let's get the upstream source.
Download debhello-0.0.tar.gz

$ wget http://www.example.org/download/debhello-0.0.tar.gz

$ tar -xzmf debhello-0.0.tar.gz
$ tree

+-- debhello-0.0

| +-- Makefile

| +-- README.md

| +-- src

| +-- hello.c

+-- debhello-0.0.tar.gz

3 directories, 4 files

Here, the C source hello.c is a very simple one.
hello.c

20

CHAPTER 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES ...

$ cat debhello-0.0/src/hello.c
#include <stdio.h>

int

main()

{
printf("Hello, world!\n");
return 0;

}

Here, the Makefile supports “GNU Coding Standards” and “FHS”. Notably:
* build binaries honoring $(CPPFLAGS), $(CFLAGS), $(LDFLAGS), etc.
« install files with $(DESTDIR) defined to the target system image

« install files with $(prefix) defined, which can be overridden to be lusr

Makefile

$ cat debhello-0.0/Makefile
prefix = /usr/local

all: src/hello

src/hello: src/hello.c
@echo "CFLAGS=$(CFLAGS)" | \
fold -s -w 70 | \
sed -e 's/N/# /'
$(CC) $(CPPFLAGS) $(CFLAGS) $(LDCFLAGS) -0 $@ $/

install: src/hello
install -D src/hello \
$(DESTDIR)$(prefix)/bin/hello

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello

.PHONY: all install clean distclean uninstall

Note

The echo of the $(CFLAGS) variable is used to verify the proper setting of the

build flag in the following example.

5.6 Step 2: Generate template files with debmake

The output from the debmake command is very verbose and explains what it does as follows.
The output from the debmake command

$ cd /path/to/debhello-0.0
$ debmake -x1

I: set parameters

I: sanity check of parameters

21

https://www.gnu.org/prep/standards/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

CHAPTER 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES ...

pkg="debhello", ver="0.0", rev="1"

*** start packaging in "debhello-0.0". ***

provide debhello_0.0.orig.tar.?z for non-native Debian package
pwd = "/path/to"

: $ In -sf debhello-0.0.tar.gz debhello_0.0.0rig.tar.gz

pwd = "/path/to/debhello-0.0"

parse binary package settings:

binary package=debhello Type=bin / Arch=any M-A=foreign

: analyze the source tree

build_type = make

scan source for copyright+license text and file extensions
50 %, ext = md

50 %, ext = ¢

: check_all_licenses

: check_all_licenses completed for 3 files.

bunch_all_licenses

: format_all_licenses

: make debian/* template files

: debmake -x "1" .

: creating => debian/control

: creating => debian/copyright

substituting => /usr/lib/python3/dist-packages/debmake/data/extra®_changel...
: creating => debian/changelog

substituting => /usr/lib/python3/dist-packages/debmake/data/extra®_rules.t...
: creating => debian/rules

substituting => /usr/lib/python3/dist-packages/debmake/data/extra®source_f...
: creating => debian/source/format

substituting => /usr/lib/python3/dist-packages/debmake/data/extral_README. ...
: creating => debian/README.Debian

substituting => /usr/lib/python3/dist-packages/debmake/data/extral_README... .
! creating => debian/README.source

substituting => /usr/lib/python3/dist-packages/debmake/data/extral_clean.t...
: creating => debian/clean

substituting => /usr/lib/python3/dist-packages/debmake/data/extral_gbp.con...
: creating => debian/gbp.conf

substituting => /usr/lib/python3/dist-packages/debmake/data/extral_salsa-c...
! creating => debian/salsa-ci.yml

substituting => /usr/lib/python3/dist-packages/debmake/data/extral_watch.t...
: creating => debian/watch

substituting => /usr/lib/python3/dist-packages/debmake/data/extraltests_co...
: creating => debian/tests/control

substituting => /usr/lib/python3/dist-packages/debmake/data/extralupstreanm.. .
: creating => debian/upstream/metadata

substituting => /usr/lib/python3/dist-packages/debmake/data/extralpatches_...
: creating => debian/patches/series

substituting => /usr/lib/python3/dist-packages/debmake/data/extralsource.n...
: creating => debian/source/local-options.ex

substituting => /usr/lib/python3/dist-packages/debmake/data/extralsource.n...
: creating => debian/source/local-patch-header.ex

substituting => /usr/lib/python3/dist-packages/debmake/data/extralsingle_d...
: creating => debian/dirs

substituting => /usr/lib/python3/dist-packages/debmake/data/extralsingle_i...
: creating => debian/install

substituting => /usr/lib/python3/dist-packages/debmake/data/extralsingle_1...
! creating => debian/links

I: $ wrap-and-sort -vast

debian/control

debian/tests/control

debian/copyright

debian/dirs

debian/install

debian/1links

--- Modified files ---

HHHMHHKMHHHMHHAKMHHMHKHHHHHH

22

CHAPTER 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES ...

debian/control

debian/dirs

debian/install

debian/1links

I: $ wrap-and-sort -vast complete. Now, debian/* may have a blank line at th...

The debmake command generates all these template files based on command line options. Since
no options are specified, the debmake command chooses reasonable default values for you:

* The source package name: debhello
¢ The upstream version: 0.0

* The binary package name: debhello

L]

The Debian revision: 1

L]

The package type: bin (the ELF binary executable package)

¢ The -x option: -x1 (without maintainer script supports for simplicity)

Note

Here, the debmake command is invoked with the -x1 option to keep this tutorial
simple. Use of default -x3 option is highly recommended.

Let's inspect generated template files.
The source tree after the basic debmake execution.

$ cd /path/to
$ tree

+-- debhello-0.0

+-- Makefile

+-- README.md

+-- debian

[+-- README.Debian
+-- README.source
+-- changelog
+-- clean
+-- control
+-- copyright

+-- dirs
+-- gbp.conf
+-- install
+-- links

I

I

I

I

I

I

I

I

[+-- patches

| | +-- series

[+-- rules

[+-- salsa-ci.yml

| +-- source

[| +-- format

[| +-- local-options.ex
| | +-- local-patch-header.ex
| +-- tests

[| +-- control

[+-- upstream

[| +-- metadata

[+-- watch

+--

+-- hello.c

23

CHAPTER 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES ...

+-- debhello-0.0.tar.gz
+-- debhello_0.0.orig.tar.gz -> debhello-0.0.tar.gz

8 directories, 24 files

The debianl/rules file is the build script provided by the package maintainer. Here is its template file
generated by the debmake command.
debian/rules (template file):

$ cd /path/to/debhello-0.0
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND -Wall -pedantic

#export DEB_LDFLAGS_MAINT_APPEND -W1, -01
%
dh $@
#override_dh_auto_install:
dh_auto_install -- prefix=/usr
#override_dh_install:
dh_install --list-missing -X.pyc -X.pyo

This is essentially the standard debianl/rules file with the dh command. (There are some commented
out contents for you to customize it.)

The debian/control file provides the main meta data for the Debian package. Here is its template
file generated by the debmake command.

debian/control (template file):

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.0
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

Warning

@ If you leave “Section: unknown” in the template debian/control file unchanged,
the lintian error may cause the build to fail.

24

CHAPTER 5. SIMPLE PACKAGING 5.7. STEP 3: MODIFICATION TO THE ...

Since this is the ELF binary executable package, the debmake command sets “Architecture: any”
and “Multi-Arch: foreign”. Also, it sets required substvar parameters as “Depends: ${shlibs:Depends},
${misc:Depends}’. These are explained in “Chapter 6".

Note

Please note this debian/control file uses the RFC-822 style as documented in
% “5.2 Source package control files — debian/control” of the “Debian Policy Man-

ual”. The use of the empty line and the leading space are significant.

The debian/copyright file provides the copyright summary data of the Debian package. Here is its
template file generated by the debmake command.
debian/copyright (template file):

$ cat debian/copyright

Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello

Upstream-Contact: <preferred name and address to reach the upstream project>
Source: <url://example.com>

#

Please double check copyright with the licensecheck(1) command.

Files: Makefile

README . md

src/hello.c
Copyright: _ NO_COPYRIGHT_NOR_LICENSE_
License: _ NO_COPYRIGHT_NOR_LICENSE_ _

Files marked as NO_LICENSE_TEXT_FOUND may be covered by the following
license/copyright files.

5.7 Step 3: Modification to the template files

Some manual modification is required to make the proper Debian package as a maintainer.

In order to install files as a part of the system files, the $(prefix) value of lusrllocal in the Makefile
should be overridden to be lusr. This can be accommodated by the following the debian/rules file with
the override_dh_auto_install target setting “prefix=/usr”.

debian/rules (maintainer version):

$ cd /path/to/debhello-0.0
$ vim debian/rules
. hack, hack, hack,

$ cat debian/rules
#!/usr/bin/make -f

export DH_VERBOSE = 1

export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND -W1, - -as-needed

%
dh $@

override_dh_auto_install:
dh_auto_install -- prefix=/usr

Exporting the DH_VERBOSE environment variable in the debian/rules file as above forces the deb-
helper tool to make a fine grained build report.

25

https://www.debian.org/doc/debian-policy/ch-controlfields.html#source-package-control-files-debian-control

CHAPTER 5. SIMPLE PACKAGING 5.7. STEP 3: MODIFICATION TO THE ...

Exporting DEB_BUILD_MAINT_OPTION as above sets the hardening options as described in the
“FEATURE AREAS/ENVIRONMENT” in dpkg-buildflags(1). 1

Exporting DEB_CFLAGS_MAINT_APPEND as above forces the C compiler to emit all the warnings.

Exporting DEB_LDFLAGS_MAINT_APPEND as above forces the linker to link only when the library
is actually needed. 2

The dh_auto_install command for the Makefile based build system essentially runs “$(MAKE) in-
stall DESTDIR=debian/debhello”. The creation of this override_dh_auto_install target changes its
behavior to “$(MAKE) install DESTDIR=debian/debhello prefix=/usr”.

Here are the maintainer versions of the debian/control and debian/copyright files.

debian/control (maintainer version):

$ vim debian/control
hack, hack, hack,

$ cat debian/control
Source: debhello
Section: devel

Priority: optional

Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:

debhelper-compat (= 13),
Standards-Version: 4.6.2

Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello

Architecture: any

Multi-Arch: foreign

Depends:

${misc:Depends},

${shlibs:Depends},

Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

debian/copyright (maintainer version):

$ vim debian/copyright
hack, hack, hack,
$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

1This is a cliché to force a read-only relocation link for the hardening and to prevent the lintian warning “W: debhello:
hardening-no-relro usr/bin/hello”. This is not really needed for this example but should be harmless. The lintian tool seems
to produce a false positive warning for this case which has no linked library.

2This is a cliché to prevent overlinking for the complex library dependency case such as Gnome programs. This is not really
needed for this simple example but should be harmless.

26

CHAPTER 5. SIMPLE PACKAGING 5.8. STEP 4: BUILDING PACKAGE WITH ...

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Let's remove unused template files and edit remaining template files:
« debian/README.source

» debian/sourcellocal-option.ex

» debian/sourcellocal-patch-header.ex

» debian/patches/series (No upstream patch)

e clean

e dirs

* install

* links

Template files under debian/. (v=0.0):

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches

$ tree -F debian

debian/

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- gbp.conf

+-- rules*

+-- salsa-ci.yml

+-- source/

| +-- format

+-- tests/

| +-- control

+-- upstream/

| +-- metadata

+-- watch

4 directories, 11 files

Tip

Configuration files used by the dh_* commands from the debhelper package
usually treat # as the start of a comment line.

5.8 Step 4: Building package with debuild

You can create a non-native Debian package using the debuild command or its equivalents (see “Sec-
tion 5.4") in this source tree. The command output is very verbose and explains what it does as follows.
Building package with debuild

27

CHAPTER 5. SIMPLE PACKAGING 5.8. STEP 4: BUILDING PACKAGE WITH ...

$ cd /path/to/debhello-0.0
$ debuild
dpkg-buildpackage -us -uc -ui -i
dpkg-buildpackage: info: source package debhello
dpkg-buildpackage: info: source version 0.0-1
dpkg-buildpackage: info: source distribution unstable
dpkg-buildpackage: info: source changed by Osamu Aoki <osamu@debian.org>
dpkg-source -i --before-build .
dpkg-buildpackage: info: host architecture amd64
debian/rules clean
dh clean
dh_auto_clean
make -j12 distclean

debian/rules binary
dh binary
dh_update_autotools_config
dh_autoreconf
dh_auto_configure
dh_auto_build
make -j12 "INSTALL=install --strip-program=true"
make[1]: Entering directory '/path/to/debhello-0.0'
CFLAGS=-g -02 -Werror=implicit-function-declaration

Finished running lintian.

You can verify that CFLAGS is updated properly with -Wall and -pedantic by the DEB_CFLAGS_MAINT_APPENL
variable.

The manpage should be added to the package as reported by the lintian package, as shown in later
examples (see “Chapter 14"). Let's move on for now.

Let’s inspect the result.

The generated files of debhello version 0.0 by the debuild command:

$ cd /path/to
$ tree -FL 1

+-- debhello-0.0/

+-- debhello-0.0.tar.gz

+-- debhello-dbgsym_0.0-1_amd64.deb

+-- debhello_0.0-1.debian.tar.xz

+-- debhello_0.0-1.dsc

+-- debhello_0.0-1_amd64.build

+-- debhello_0.0-1_amd64.buildinfo

+-- debhello_0.0-1_amd64.changes

+-- debhello_0.0-1_amd64.deb

+-- debhello_0.0.0rig.tar.gz -> debhello-0.0.tar.gz

2 directories, 9 files

You see all the generated files.

* The debhello_0.0.orig.tar.gz is a symlink to the upstream tarball.

The debhello_0.0-1.debian.tar.xz contains the maintainer generated contents.

The debhello_0.0-1.dsc is the meta data file for the Debian source package.

The debhello_0.0-1_amd64.deb is the Debian binary package.

The debhello-dbgsym_0.0-1_amd64.deb is the Debian debug symbol binary package. See “Sec-
tion 10.21".

The debhello_0.0-1_amd64.build file is the build log file.

L]

The debhello_0.0-1_amd64.buildinfo file is the meta data file generated by dpkg-genbuildinfo(1).

28

CHAPTER 5. SIMPLE PACKAGING 5.8. STEP 4: BUILDING PACKAGE WITH ...

¢ The debhello_0.0-1_amdé64.changes is the meta data file for the Debian binary package.

The debhello_0.0-1.debian.tar.xz contains the Debian changes to the upstream source as follows.
The compressed archive contents of debhello_0.0-1.debian.tar.xz:

$ tar -tzf debhello-0.0.tar.gz
debhello-0.0/

debhello-0.0/src/

debhello-0.0/src/hello.c
debhello-0.0/Makefile

debhello-0.0/README.md

$ tar --xz -tf debhello_0.0-1.debian.tar.xz

debian/

debian/README.Debian
debian/changelog
debian/control
debian/copyright

debian/gbp.

conf

debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/

debian/upstream/metadata

debian/watch

The debhello_0.0-1_amd6é4.deb contains the binary files to be installed to the target system.
The debhello-dbgsym_0.0-1_amd64.deb contains the debug symbol files to be installed to the tar-

get system.

The binary package contents of all binary packages:

$ dpkg -c debhello- dbgsym 0.0-1_amd64.deb

drwxr-xr-x root/root/

drwxr-xr-x root/root/usr/

drwxr-xr-x root/root/usr/lib/

drwxr-xr-x root/root/usr/lib/debug/

drwxr-xr-x root/root/usr/lib/debug/.build-id/

drwxr-xr-x root/root/usr/lib/debug/.build-id/c4/

-rw-r--r-- root/root/usr/lib/debug/.build-id/c4/cec6427d45de48efc7f263...
drwxr-xr-x root/root/usr/share/

drwxr-xr-x root/root/usr/share/doc/

lrwxrwxrwx root/root ./usr/share/doc/debhello-dbgsym -> debhello
$ dpkg -c debhello_! 0 0 1_amd64.deb

drwxr-xr-x root/root/

drwxr-xr-x root/root/usr/

drwxr-xr-x root/root/usr/bin/

-rwxr-xr-x root/root/usr/bin/hello

drwxr-xr-x root/root/usr/share/

drwxr-xr-x root/root/usr/share/doc/

drwxr-xr-x root/root/usr/share/doc/debhello/

-rw-r--r-- root/root/usr/share/doc/debhello/README.Debian
-rw-r--r-- root/root/usr/share/doc/debhello/changelog.Debian.gz
-rw-r--r-- root/root/usr/share/doc/debhello/copyright

The generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=0.0):

$ dpkg -f debhello-dbgsym_0.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends:

debhello (= 0.0-1)

$ dpkg -f debhello_0.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends:

libc6é (>= 2.34)

29

CHAPTER 5. SIMPLE PACKAGING 5.9. STEP 3 (ALTERNATIVES): ...

Caution

@ Many more details need to be addressed before uploading the package to the
Debian archive.

If manual adjustments of auto-generated configuration files by the debmake com-
mand are skipped, the generated binary package may lack meaningful package

description and some of the policy requirements may be missed. This sloppy
package functions well under the dpkg command, and may be good enough for
your local deployment.

5.9 Step 3 (alternatives): Modification to the upstream source

The above example did not touch the upstream source to make the proper Debian package. An alter-
native approach as the maintainer is to modify files in the upstream source. For example, Makefile may
be modified to set the $(prefix) value to lusr.

Note

The above “Section 5.7” using the debian/rules file is the better approach for
% packaging for this example. But let’s continue on with this alternative approaches

as a leaning experience.

In the following, let’s consider 3 simple variants of this alternative approach to generate debian/patches/*
files representing modifications to the upstream source in the Debian source format “3.0 (quilt)”. These
substitute “Section 5.7” in the above step-by-step example:

¢ “Section 5.10”
¢ “Section 5.11"
¢ “Section 5.12”

Please note the debian/rules file used for these examples doesn't have the override_dh_auto_install
target as follows:
debian/rules (alternative maintainer version):

$ cd /path/to/debhello-0.0
$ vim debian/rules
. hack, hack, hack,

$ cat debian/rules
#!/usr/bin/make -f

export DH_VERBOSE = 1

export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -W1, --as-needed
%:

dh $@

30

CHAPTER 5. SIMPLE PACKAGING 5.10. PATCH BY “DIFF -U” APPROACH

5.10 Patch by “diff -u” approach

Here, the patch file 000-prefix-usr.patch is created using the diff command.
Patch by diff -u

$ cp -a debhello-0.0 debhello-0.0.0rig
$ vim debhello-0.0/Makefile
. hack, hack, hack,

$ diff -Nru debhello-0.0.orig debhello-0.0 >000-prefix-usr.patch

$ cat 000-prefix-usr.patch

diff -Nru debhello-0.0.orig/Makefile debhello-0.0/Makefile

--- debhello-0.0.0orig/Makefile 2024-11-29 07:57:10.299591959 +0000
+++ debhello-0.0/Makefile 2024-11-29 07:57:10.391593434 +0000
@@ '114 +1I4 @@

-prefix /usr/local

+prefix /usr

all: src/hello

$ rm -rf debhello-0.0
$ mv -f debhello-0.0.orig debhello-0.0

Please note that the upstream source tree is restored to the original state after generating a patch
file 000-prefix-usr.patch.

This 000-prefix-usr.patch is edited to be DEP-3 conforming and moved to the right location as below.

000-prefix-usr.patch (DEP-3):

$ echo '000-prefix-usr.patch' >debian/patches/series
$ vim ../000-prefix-usr.patch
. hack, hack, hack,
$ mv -f ../000-prefix-usr.patch debian/patches/000-prefix-usr.patch
$ cat debian/patches/000-prefix-usr.patch
From: Osamu Aoki <osamu@debian.org>
Description: set prefix=/usr patch
diff -Nru debhello-0.0.orig/Makefile debhello-0.0/Makefile
--- debhello-0.0.0rig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

Note

buildpackage in the following step of “Section 5.8”, the dpkg-source com-
mand assumes that no patch was applied to the upstream source, since the
.pclapplied-patches is missing.

When generating the Debian source package by dpkg-source via dpkg-

5.11 Patch by dquilt approach

Here, the patch file 000-prefix-usr.patch is created using the dquilt command.

dquilt is a simple wrapper of the quilt program. The syntax and function of the dquilt command
is the same as the quilt(1) command, except for the fact that the generated patch is stored in the de-
bian/patchesl/ directory.

Patch by dquilt

31

https://dep-team.pages.debian.net/deps/dep3/

CHAPTER 5. SIMPLE PACKAGING 5.11. PATCH BY DQUILT APPROACH

$ dquilt new 000-prefix-usr.patch
Patch debian/patches/000-prefix-usr.patch is now on top
$ dquilt add Makefile
File Makefile added to patch debian/patches/000-prefix-usr.patch
hack, hack, hack,
$ head -1 Makefile
prefix = /usr
$ dquilt refresh
Refreshed patch debian/patches/000-prefix-usr.patch
$ dquilt header -e --dep3
. edit the DEP-3 patch header with editor
$ tree -a

+-- .pcC
| +-- .quilt_patches
| +-- .quilt_series
| +-- .version
| +-- 000-prefix-usr.patch
| | +-- .timestamp
| [+-- Makefile
| +-- applied-patches
+-- Makefile
+-- README.md
+-- debian
| +-- README.Debian
+-- README. source
+-- changelog
+-- clean
+-- control
+-- copyright

+-- dirs

+-- gbp.conf
+-- install
+-- links

|
I
I
I
I
I
I
I
| +-- patches
| [+-- 000-prefix-usr.patch
| | +-- series
| +-- rules
| +-- salsa-ci.yml
| +-- source
| [+-- format
| [+-- local-options.ex
| | +-- local-patch-header.ex
| +-- tests
| [+-- control
| +-- upstream
| [+-- metadata
| +-- watch
+-- src
+-- hello.c

9 directories, 29 files

$ cat debian/patches/series
000-prefix-usr.patch

$ cat debian/patches/000-prefix-usr.patch
Description: set prefix=/usr patch
Author: Osamu Aoki <osamu@debian.org>
Index: debhello-0.0/Makefile

--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@

-prefix = /usr/local

32

CHAPTER 5. SIMPLE PACKAGING 5.12. PATCH BY "“DPKG-SOURCE ...

+prefix = /usr
all: src/hello

Here, Makefile in the upstream source tree doesn’t need to be restored to the original state for the
packaging.

Note

buildpackage in the following step of “Section 5.8”, the dpkg-source com-
mand assumes that patches were applied to the upstream source, since the
.pclapplied-patches exists.

When generating the Debian source package by dpkg-source via dpkg-

The upstream source tree can be restored to the original state for the packaging.
The upstream source tree (restored):

$ dquilt pop -a
Removing patch debian/patches/000-prefix-usr.patch
Restoring Makefile

No patches applied
$ head -1 Makefile
prefix = /usr/local
$ tree -a .pc

.pc
+-- .quilt_patches
+-- .quilt_series
+-- .version

1 directory, 3 files

Here, Makefile is restored and the .pclapplied-patches is missing.

5.12 Patch by “dpkg-source --auto-commit” approach

Here, the patch file isn’t created in this step but the source files are setup to create debian/patches/*
files in the following step of “Section 5.8”.

Let’s edit the upstream source.

Modified Makefile

$ vim Makefile

. hack, hack, hack,
$ head -n1 Makefile
prefix = /usr

Let’s edit debian/source/local-options:
debian/source/local-options for auto-commit

$ mv debian/source/local-options.ex debian/source/local-options
$ vim debian/source/local-options
. hack, hack, hack,

$ cat debian/source/local-options
== Patch applied strategy (merge) ==

#

The source outside of debian/ directory is modified by maintainer and

different from the upstream one:

* Workflow using dpkg-source commit (commit all to VCS after dpkg-source ...
https://www.debian.org/doc/manuals/debmake-doc/ch@4.en.html#dpkg-sour...
* Workflow described in dgit-maint-merge(7)
#

single-debian-patch

33

CHAPTER 5. SIMPLE PACKAGING 5.12. PATCH BY "“DPKG-SOURCE ...

auto-commit

Let’s edit debian/sourcellocal-patch-header:
debian/sourcellocal-patch-header for auto-commit

$ mv debian/source/local-patch-header.ex debian/source/local-patch-header
$ vim debian/source/local-patch-header
. hack, hack, hack,
$ cat debian/source/local-patch-header
Description: debian-changes
Author: Osamu Aoki <osamu@debian.org>

Let's remove debian/patches/* files and other unused template files.
Remove unused template files

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches

$ tree debian

debian

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- gbp.conf

+-- rules

+-- salsa-ci.yml

+-- source

| +-- format

| +-- local-options

| +-- local-patch-header

+-- tests

| +-- control

+-- upstream

| +-- metadata

+-- watch

4 directories, 13 files

There are no debian/patches/* files at the end of this step.

Note

buildpackage in the following step of “Section 5.8, the dpkg-source command
uses options specified in debian/sourcellocal-options to auto-commit modifica-
tion applied to the upstream source as patches/debian-changes.

’l When generating the Debian source package by dpkg-source via dpkg-

Let's inspect the Debian source package generated after the following “Section 5.8” step and extract-
ing files from debhello-0.0.debian.tar.xz.
Inspect debhello-0.0.debian.tar.xz after debuild

$ tar --xz -xvf debhello_0.0-1.debian.tar.xz
debian/

debian/README.Debian
debian/changelog
debian/control
debian/copyright
debian/gbp.conf
debian/patches/
debian/patches/debian-changes
debian/patches/series
debian/rules

34

CHAPTER 5. SIMPLE PACKAGING 5.12. PATCH BY "“DPKG-SOURCE ...

debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

Let's check generated debian/patches/* files.
Inspect debian/patches/* after debuild

$ cat debian/patches/series
debian-changes

$ cat debian/patches/debian-changes
Description: debian-changes

Author: Osamu Aoki <osamu@debian.org>

--- debhello-0.0.0orig/Makefile
+++ debhello-0.0/Makefile

@@ '114 +1I4 @@

-prefix /usr/local

+prefix /usr

all: src/hello

The Debian source package debhello-0.0.debian.tar.xz is confirmed to be generated properly with
debian/patches/* files for the Debian modification.

35

Chapter 6

Basics for packaging

Here, a broad overview is presented without using VCS operations for the basic rules of Debian pack-
aging focusing on the non-native Debian package in the “3.0 (quilt)” format.

Note

% Some details are intentionally skipped for clarity. Please read the manpages
of the dpkg-source(1), dpkg-buildpackage(1), dpkg(1), dpkg-deb(1), deb(5),

etc.

The Debian source package is a set of input files used to build the Debian binary package and is not
a single file.

The Debian binary package is a special archive file which holds a set of installable binary data with
its associated information.

A single Debian source package may generate multiple Debian binary packages defined in the de-
bian/control file.

The non-native Debian package in the Debian source format “3.0 (quilt)” is the most normal Debian
source package format.

Note

There are many wrapper scripts. Use them to streamline your workflow but make
sure to understand the basics of their internals.

6.1 Packaging workflow

The Debian packaging workflow to create a Debian binary package involves generating several specif-
ically named files (see “Section 6.3") as defined in the “Debian Policy Manual”. This workflow can be
summarized in 10 steps with some over simplification as follows.

1. The upstream tarball is downloaded as the package-version.tar.gz file.

2. The upstream tarball is untarred to create many files under the package-versionl directory.

3. The upstream tarball is copied (or symlinked) to the particular filename packagename_version.orig.tar.gz.

« the character separating package and version is changed from - (hyphen) to _ (underscore)
* .orig is added in the file extension.

4. The Debian package specification files are added to the upstream source under the package-
versionldebian/ directory.

36

CHAPTER 6. BASICS FOR PACKAGING 6.1. PACKAGING WORKFLOW

» Required specification files under the debian/ directory:

debian/rules The executable script for building the Debian package (see “Section 6.5")

debian/control The package configuration file containing the source package name, the
source build dependencies, the binary package name, the binary dependencies, etc. (see
“Section 6.6")

debian/changelog The Debian package history file defining the upstream package version
and the Debian revision in its first line (see “Section 6.7")

debian/copyright The copyright and license summary (see “Section 6.8")
» Optional specification files under the debian/* (see “Section 6.14”):

» The debmake command invoked in the package-versionl directory may be used to provide
the initial template of these configuration files.
- Required specification files are generated even with the -x0 option.
- The debmake command does not overwrite any existing configuration files.

» These files must be manually edited to their perfection according to the “Debian Policy Manual”
and “Debian Developer’s Reference”.

5. The dpkg-buildpackage command (usually from its wrapper debuild or sbuild) is invoked in the
package-versionl directory to make the Debian source and binary packages by invoking the de-
bian/rules script.

» The current directory is set as: “CURDIR=/path/to/package-version/”

» Create the Debian source package in the Debian source format “3.0 (quilt)” using dpkg-
source(1)

— package_version.orig.tar.gz (copy or symlink of package-version.tar.gz)
— package_version-revision.debian.tar.xz (tarball of debian/ found in package-versionl)
— package_version-revision.dsc
* Build the source using “debian/rules build” into $(DESTDIR)
— “DESTDIR=debianl/binarypackagel” for single binary package 1
- “DESTDIR=debian/tmp/” for multi binary package
» Create the Debian binary package using dpkg-deb(1), dpkg-genbuildinfo(1), and dpkg-
genchanges(1).
— binarypackage_version-revision_arch.deb
— ... (There may be multiple Debian binary package files.)
— package_version-revision_arch.changes
— package_version-revision_arch.buildinfo

6. Check the quality of the Debian package with the lintian command. (recommended)

 Follow the rejection guidelines from ftp-master.

- “REJECT-FAQ”
- “NEW checklist”
- “Lintian Autorejects” (“lintian tag list”)

7. Test the goodness of the generated Debian binary package manually by installing it and running
its programs.

8. After confirming the goodness, prepare files for the normal source-only upload to the Debian
archive.

9. Sign the Debian package file with the debsign command using your private GPG key.

» Use “debsign package version-revision_source.changes” (normal source-only upload situ-
ation)

1This is the default up to debhelper v13. At debhelper v14, it warns the default change. After debhelper v15, it will change
the default to DESTDIR=debian/tmp/ .

37

https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/manuals/developers-reference/
https://ftp-master.debian.org/
https://ftp-master.debian.org/REJECT-FAQ.html
https://ftp-master.debian.org/NEW-checklist.html
https://ftp-master.debian.org/#lintianrejects
https://ftp-master.debian.org/static/lintian.tags

CHAPTER 6. BASICS FOR PACKAGING 6.2. DEBHELPER PACKAGE

» Use “debsign package_version-revision_arch.changes” (exceptional binary upload situation
such as NEW uploads, and security uploads) files for the binary Debian package upload.

10. Upload the set of the Debian package files with the dput command to the Debian archive.

» Use “dput package_version-revision_source.changes” (source-only upload)
» Use “dput package_version-revision_arch.changes” (binary upload)

Test building and confirming of the binary package goodness as above is the moral obligation as
a diligent Debian developer but there is no physical barrier for people to skip such operations at this
moment for the source-only upload.

Here, please replace each part of the filename as:

« the package part with the Debian source package name

« the binarypackage part with the Debian binary package name
« the version part with the upstream version

« the revision part with the Debian revision

« the arch part with the package architecture (e.g., amd64)

See also “Source-only uploads”.

Tip

Many patch management and VCS usage strategies for the Debian packaging

are practiced. You don’t need to use all of them.

Tip

There is very extensive documentation in “Chapter 6. Best Packaging Practices”

in the “Debian Developer’s Reference”. Please read it.

6.2 debhelper package

Although a Debian package can be made by writing a debian/rules script without using the debhelper
package, it is impractical to do so. There are too many modern “Debian Policy” required features to be
addressed, such as application of the proper file permissions, use of the proper architecture dependent
library installation path, insertion of the installation hook scripts, generation of the debug symbol package,
generation of package dependency information, generation of the package information files, application
of the proper timestamp for reproducible build, etc.

Debhelper package provides a set of useful scripts in order to simplify Debian’s packaging workflow
and reduce the burden of package maintainers. When properly used, they will help packagers handle
and implement “Debian Policy” required features automatically.

The modern Debian packaging workflow can be organized into a simple modular workflow by:

« using the dh command to invoke many utility scripts automatically from the debhelper package,
and

« configuring their behavior with declarative configuration files in the debian/ directory.

38

https://wiki.debian.org/SourceOnlyUpload
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/

CHAPTER 6. BASICS FOR PACKAGING 6.3. PACKAGE NAME AND VERSION

You should almost always use debhelper as your package’s build dependency. This document also
assumes that you are using a fairly contemporary version of debhelper to handle packaging works in
the following contents.

Note

For debhelper “compat >= 9", the dh command exports compiler flags (CFLAGS,

CXXFLAGS, FFLAGS, CPPFLAGS and LDFLAGS) with values as returned
by dpkg-buildflags if they are not set previously. (The dh command calls

set_buildflags defined in the Debian::Debhelper::Dh_Lib module.)

Note

debhelper(1) changes its behavior with time. Please make sure to read
debhelper-compat-upgrade-checklist(7) to understand the situation.

6.3 Package name and version

If the upstream source comes as hello-0.9.12.tar.gz, you can take hello as the upstream source package
name and 0.9.12 as the upstream version.

There are some limitations for what characters may be used as a part of the Debian package. The
most notable limitation is the prohibition of uppercase letters in the package name. Here is a summary
as a set of regular expressions:

e Upstream package name (-p): [-+.a-z0-9]{2,}

¢ Binary package name (-b): [-+.a-z0-9]{2,}

e Upstream version (-u): [0-9][-+.:~a-z0-9A-Z]*
e Debian revision (-r);: [0-9][+.~a-z0-9A-Z]*

See the exact definition in “Chapter 5 - Control files and their fields” in the “Debian Policy Manual”.

You must adjust the package name and upstream version accordingly for the Debian packaging.

In order to manage the package name and version information effectively under popular tools such
as the aptitude command, it is a good idea to keep the length of package name to be equal or less than
30 characters; and the total length of version and revision to be equal or less than 14 characters. 2

In order to avoid name collisions, the user visible binary package name should not be chosen from
any generic words.

If upstream does not use a normal versioning scheme such as 2.30.32 but uses some kind of date
such as 11Apr29, a random codename string, or a VCS hash value as part of the version, make sure to
remove them from the upstream version. Such information can be recorded in the debian/changelog
file. If you need to invent a version string, use the YYYYMMDD format such as 20110429 as upstream
version. This ensures that the dpkg command interprets later versions correctly as upgrades. If you need
to ensure a smooth transition to a normal version scheme such as 0.1 in the future, use the 0~YYMMDD
format such as 0~110429 as upstream version, instead.

Version strings can be compared using the dpkg command as follows.

$ dpkg --compare-versions verl op ver2
The version comparison rule can be summarized as:

« Strings are compared from the head to the tail.

2For more than 90% of packages, the package name is equal or less than 24 characters; the upstream version is equal or less
than 10 characters and the Debian revision is equal or less than 3 characters.

39

https://www.debian.org/doc/debian-policy/#document-ch-controlfields

CHAPTER 6. BASICS FOR PACKAGING 6.4. NATIVE DEBIAN PACKAGE

 Letters are larger than digits.

¢ Numbers are compared as integers.

 Letters are compared in ASCII code order.

There are special rules for period (.), plus (+), and tilde (~) characters, as follows.

0.0 < 0.5<0.10 < 0.99 <1< 1.0~rcl1 <1.0 < 1.0+b1 < 1.0+nmul < 1.1 < 2.0

One tricky case occurs when the upstream releases hello-0.9.12-ReleaseCandidate-99.tar.gz as
the pre-release of hello-0.9.12.tar.gz. You can ensure the Debian package upgrade to work properly by
renaming the upstream source to hello-0.9.12~rc99.tar.gz.

6.4 Native Debian package

The non-native Debian package in the Debian source format “3.0 (quilt)” is the most normal Debian
source package format. The debian/sourcelformat file should have “3.0 (quilt)” in it as described in
dpkg-source(1). The above workflow and the following packaging examples always use this format.

A native Debian package is the rare Debian binary package format. It may be used only when the
package is useful and valuable only for Debian. Thus, its use is generally discouraged.

Caution

accessible from the dpkg-buildpackage command with its correct name pack-
age_version.orig.tar.gz . This is a typical newbie mistake caused by making a
symlink name with “-” instead of the correct one with “_".

: A native Debian package is often accidentally built when its upstream tarball is not

A native Debian package has no separation between the upstream code and the Debian changes
and consists only of the following:

* package_version.tar.gz (copy or symlink of package-version.tar.gz with debian/* files.)
* package_version.dsc

If you need to create a native Debian package, create it in the Debian source format “3.0 (native)”
using dpkg-source(1).

Tip

There is no need to create the tarball in advance if the native Debian package
format is used. The debian/sourcelformat file should have “3.0 (native)” in it as
described in dpkg-source(1) and The debian/sourcel/format file should have
the version without the Debian revision (1.0 instead of 1.0-1). Then, the tarball
containing is generated when “dpkg-source -b” is invoked in the source tree.

6.5 debian/rules file

The debianlrules file is the executable script which re-targets the upstream build system to install files
in the $(DESTDIR) and creates the archive file of the generated files as the deb file. The deb file is used
for the binary distribution and installed to the system using the dpkg command.

The Debian policy compliant debian/rules file supporting all the required targets can be written as
simple as 3:

Simple debian/rules:

3The debmake command generates a bit more complicated debian/rules file. But this is the core part.

40

CHAPTER 6. BASICS FOR PACKAGING 6.6. DEBIAN/CONTROL FILE

#!/usr/bin/make -f
#export DH_VERBOSE = 1

%
dh $@

The dh command functions as the sequencer to call all required “dh target” commands at the right
moment. 4

» dh clean : clean files in the source tree.

« dh build : build the source tree

< dh build-arch : build the source tree for architecture dependent packages

¢ dh build-indep : build the source tree for architecture independent packages

» dh install : install the binary files to $(DESTDIR)

« dh install-arch : install the binary files to $(DESTDIR) for architecture dependent packages
« dh install-indep : install the binary files to $(DESTDIR) for architecture independent packages
¢ dh binary : generate the deb file

« dh binary-arch : generate the deb file for architecture dependent packages

« dh binary-indep : generate the deb file for architecture independent packages

Here, $(DESTDIR) path depends on the build type.

* “DESTDIR=debianlbinarypackagel” for single binary package °

* “DESTDIR=debian/tmp/” for multi binary package

See “Section 9.2"” and “Section 9.3” for customization.

Tip

Setting “export DH_VERBOSE = 1" outputs every command that modifies files
on the build system. Also it enables verbose build logs for some build systems.

6.6 debian/control file

The debian/control file consists of blocks of metadata separated by blank lines. Each block of metadata
defines the following, in this order:

« meta data for the Debian source package
« meta data for the Debian binary packages

See “Chapter 5 - Control files and their fields” of the "Debian Policy Manual” for the definition of each
metadata field.

4This simplicity is available since version 7 of the debhelper package. This guide assumes the use of debhelper version 13
or newer.

5This is the default up to debhelper v13. At debhelper v14, it warns the default change. After debhelper v15, it will change
the default to DESTDIR=debian/tmp/ .

41

https://www.debian.org/doc/debian-policy/ch-controlfields.html

CHAPTER 6. BASICS FOR PACKAGING 6.7. DEBIAN/CHANGELOG FILE

Note

The debmake command sets the debian/control file with “Build-Depends:

debhelper-compat (= 13)” to set the debhelper compatibility level.

Tip

If an existing package has a debhelper compatibility level lower than 13, it's

probably time to update its packaging.

6.7 debian/changelog file

The debian/changelog file records the Debian package history.

 Edit this file using the debchange command (alias dch).

The first line defines the upstream package version and the Debian revision.
« Document changes in a specific, formal, and concise style.

- If Debian maintainer modification fixes reported bugs, add “Closes: #<bug_number>"to close
those bugs.

« Even if you're uploading your package yourself, you must document all non-trivial user-visible
changes, such as:

— Security-related bug fixes.
- User interface changes.
« If you're asking a sponsor to upload it, document changes more comprehensively, including all
packaging-related ones, to help with package review.
— The sponsor shouldn’t have to guess your reasoning behind package changes.
— Remember that the sponsor’s time is valuable.

After finishing your packaging and verifying its quality, execute the "dch -r" command and save the
finalized debian/changelog file with the suite normally set to unstable. ¢ If you're packaging for back-
ports, security updates, LTS, etc., use the appropriate distribution names instead.

The debmake command creates the initial template file with the upstream package version and the

Debian revision. The distribution is set to UNRELEASED to prevent accidental uploads to the Debian
archive.

Tip

The date string used in the debian/changelog file can be manually generated
by the “LC_ALL=C date -R” command.

s|f you're using the vim editor, make sure to save this with the ":wq” command.

42

CHAPTER 6. BASICS FOR PACKAGING 6.8. DEBIAN/COPYRIGHT FILE

Tip

Use a debian/changelog entry with a version string like 1.0.1-1~rc1 when ex-

perimenting. Later, consolidate such changelog entries into a single entry for
the official package.

The debian/changelog file is installed in the lusr/shareldoclbinarypackage directory as changelog.Debian.gz
by the dh_installchangelogs command.

The upstream changelog is installed in the lusrIshareldoclbinarypackage directory as changelog.gz.

The upstream changelog is automatically found by the dh_installchangelogs using the case insen-
sitive match of its file name to changelog, changes, changelog.txt, changes.txt, history, history.txt,
or changelog.md and searched in the ./ doc/ or docsl/ directories.

6.8 debian/copyright file

Debian takes copyright and license matters very seriously. The "Debian Policy Manual” requires a sum-
mary of these in the debian/copyright file of the package.

e “12.5. Copyright information”

e “2.3. Copyright considerations”

 “License information”

The debmake command creates the initial debian/copyright template file.
» Double-check copyright information using the licensecheck(1) command.
« Format it as a “machine-readable debian/copyright file (DEP-5)".

Unless specifically requested to be pedantic with the -P option, the debmake command skips report-
ing auto-generated files with permissive licenses for practicality.

Caution

@ The debian/copyright file should be sorted with generic file patterns at the top
of the list. See “Section 16.6".

Note

If you find issues with this license checker, please file a bug report to the debmake
package with the problematic part of text containing the copyright and license.

6.9 debian/patches/* files

As demonstrated in “Section 5.9, the debian/patches/ directory holds
 patch-file-name.patch files providing -p1 patches and
« the series file which defines how these patches are applied.

See how these files are used in:

43

https://www.debian.org/doc/debian-policy/ch-docs.html#s-copyrightfile
https://www.debian.org/doc/debian-policy/ch-archive.html#s-pkgcopyright
https://www.debian.org/legal/licenses/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/

CHAPTER 6. BASICS FOR PACKAGING 6.10. DEBIAN/SOURCE/INCLUDE-BINARIES ...

e “Section 13.6” to build the Debian source package

« “Section 13.7” to extract source files from the Debian source package

Note

Header texts of these patches should conform to “DEP-3".

Note

If you want to use VCS tools such as git, gbp and dgit to create and manage
these patches after learning basics here, please refer to later in “Chapter 11”".

6.10 debian/sourcelinclude-binaries file

The “dpkg-source --commit” command functions like dquilt but has one advantage over the dquilt
command. While the dquilt command can’'t handle modified binary files, the “dpkg-source --commit”
command detects modified binary files and lists them in the debian/sourcelinclude-binaries file to in-
clude them in the Debian tarball as a part of the Debian source package.

6.11 debian/watch file

The uscan(1) command downloads the latest upstream version using the debian/watch file. E.g.:
Basic debian/watch file:

version=4
https://ftp.gnu.org/gnu/hello/ @PACKAGE@@ANY_VERSION@@ARCHIVE_ EXT@

The uscan command may verify the authenticity of the upstream tarball with optional configuration
(see “Section 6.12").
See uscan(l), “Section 9.4", “Section 8.1", and “Section 11.10” for more.

6.12 debian/upstream/signing-key.asc file

Some packages are signed by a GPG key and their authenticity can be verified using their public GPG
key.

For example, “GNU hello” can be downloaded via HTTP from https://ftp.gnu.org/gnu/hello/ . There
are sets of files:

« hello-version.tar.gz (upstream source)
« hello-version.tar.gz.sig (detached signature)

Let’s pick the latest version set.
Download the upstream tarball and its signature.

$ wget https://ftp.gnu.org/gnu/hello/hello-2.9.tar.gz
$ wget https://ftp.gnu.org/gnu/hello/hello-2.9.tar.gz.sig

$ gpg --verify hello-2.9.tar.gz.sig

44

https://dep-team.pages.debian.net/deps/dep3/
https://www.gnu.org/software/hello/
https://ftp.gnu.org/gnu/hello/

CHAPTER 6. BASICS FOR PACKAGING 6.13. DEBIAN/SALSA-CI.YML FILE

gpg: Signature made Thu 10 Oct 2013 08:49:23 AM JST using DSA key ID 8OEE4AQ0
gpg: Can't check signature: public key not found

If you know the public GPG key of the upstream maintainer from the mailing list, use it as the
debian/upstream/signing-key.asc file. Otherwise, use the hkp keyserver and check it via your web
of trust.

Download public GPG key for the upstream

$ gpg --keyserver hkp://keys.gnupg.net --recv-key 8OEE4A00

gpg: requesting key 8OEE4A00 from hkp server keys.gnupg.net

gpg: key 8OEE4A00: public key "Reuben Thomas <rrt@sc3d.org>" imported

gpg: no ultimately trusted keys found

gpg: Total number processed: 1

apg: imported: 1

$ gpg --verify hello-2.9.tar.gz.sig

gpg: Signature made Thu 10 Oct 2013 08:49:23 AM JST using DSA key ID 8OEE4AQ0
gpg: Good signature from "Reuben Thomas <rrt@sc3d.org>"

Primary key fingerprint: 9297 8852 A62F AS5E2 85B2 A174 6808 9F73 80EE 4A00

Tip
If your network environment blocks access to the HKP port 11371, use
“hkp:/lkeyserver.ubuntu.com:80” instead.

After confirming the key ID 80EE4AO00 is a trustworthy one, download its public key into the debian/upstream/signi
key.asc file.
Set public GPG key to debian/upstream/signing-key.asc

$ gpg --armor --export 8OEE4A00 >debian/upstream/signing-key.asc

With the above debian/upstream/signing-key.asc file and the following debian/watch file, the us-
can command can verify the authenticity of the upstream tarball after its download. E.g.:
Improved debian/watch file with GPG support:

version=4
opts="pgpsigurlmangle=s/$/.sig/" \
https://ftp.gnu.org/gnu/hello/ @PACKAGE@@ANY_VERSION@@ARCHIVE_ EXT@

6.13 debian/salsa-ci.yml file

Install Salsa CI configuration file. See “Section 11.3".

6.14 Other debian/* files

Optional configuration files may be added under the debian/ directory. Most of them are to control dh_*
commands offered by the debhelper package but there are some for dpkg-source, lintian and gbp
commands.

Tip

Even an upstream source without its build system can be packaged just by using
these files. See “Section 14.2” as an example.

45

https://en.wikipedia.org/wiki/Web_of_trust
https://en.wikipedia.org/wiki/Web_of_trust
https://salsa.debian.org/salsa-ci-team/pipeline

CHAPTER 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

The alphabetical list of notable optional debianlbinarypackage.* configuration files listed below pro-
vides very powerful means to set the installation path of files. Please note:

* The “-x[01234]" superscript notation that appears in the following list indicates the minimum value
for the debmake -x option that generates the associated template file. See “Section 16.9” or deb-
make(1) for details.

¢ For a single binary package, the “binarypackage.” part of the filename in the list may be removed.

For a multi binary package, a configuration file missing the “binarypackage” part of the filename is
applied to the first binary package listed in the debian/control.

When there are many binary packages, their configurations can be specified independently by pre-
fixing their name to their configuration filenames such as “package-1.install”, “package-2.install”,
etc.

« Some template configuration files may not be created by the debmake command. In such cases,
you need to create them with an editor.

« Some configuration template files generated by the debmake command with an extra .ex suffix
need to be activated by removing that suffix.

« Unused configuration template files generated by the debmake command should be removed.

« Copy configuration template files as needed to the filenames matching their pertinent binary pack-
age names.

binarypackage.bug-control 3 installed as usri/share/buglbinarypackagelcontrol in binarypack-
age. See “Section 9.11".

binarypackage.bug-presubj 2 installed as usr/sharel/buglbinarypackagelpresubj in binarypack-
age. See “Section 9.11".

binarypackage.bug-script > installed as usr/share/buglbinarypackage or usrisharel/buglbinarypackagelsci
in binarypackage. See “Section 9.11".

binarypackage.bash-completion >3 List bash completion scripts to be installed.
The bash-completion package is required for both build and user environments.
See dh_bash-completion(1).

clean 2 List files that should be removed but are not cleaned by the dh_auto_clean command.
See dh_auto_clean(1) and dh_clean(1).

compat ** Set the debhelper compatibility level. (deprecated)

Use “Build-Depends: debhelper-compat (= 13)” in debian/control to specify the compati-
bility level and remove debian/compat.
See “COMPATIBILITY LEVELS” in debhelper(7).
binarypackage.conffiles 3 This optional file is installed into the DEBIAN directory within the

binary package while supplementing it with all the conffiles auto-detected by debhelper.
This file is primarily useful for using "special” entries such as the remove-on-upgrade feature
from dpkg(2).
If the program you're packaging requires every user to modify the configuration files in the
letc directory, there are two popular ways to arrange for them not to be conffiles, keeping the
dpkg command happy and quiet.

- Create a symlink under the letc directory pointing to a file under the Ivar directory gener-

ated by the maintainer scripts.
- Create a file generated by the maintainer scripts under the letc directory.

See dh_installdeb(1).

binarypackage.config ™3 This is the debconf config script used for asking any questions nec-
essary to configure the package. See “Section 10.22".

binarypackage.cron.hourly ™3 Installed into the etc/cron/hourlylbinarypackage file in binary-
package.

See dh_installcron(1) and cron(8).

46

CHAPTER 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

binarypackage.cron.daily ™3 Installed into the etc/cronldailylbinarypackage file in binarypack-
age.
See dh_installcron(1) and cron(8).
binarypackage.cron.weekly 2 Installed into the etclcronlweeklylbinarypackage file in binary-
package.
See dh_installcron(1) and cron(8).
binarypackage.cron.monthly >3 Installed into the *etc/cron/monthly/*binarypackage file in bina-
rypackage.
See dh_installcron(1) and cron(8).
binarypackage.cron.d >3 Installed into the etc/cron.dlbinarypackage file in binarypackage.
See dh_installcron(1), cron(8), and crontab(5).
binarypackage.default 2 If this exists, it is installed into etc/default/binarypackage in binary-
package.
See dh_installinit(1).
binarypackage.dirs 1 List directories to be created in binarypackage.
See dh_installdirs(1).
Usually, this is not needed since all dh_install* commands create required directories auto-
matically. Use this only when you run into trouble.
binarypackage.doc-base ! Installed as the doc-base control file in binarypackage.
See dh_installdocs(1) and “Debian doc-base Manual (doc-base.html)” provided by the doc-
base package.
binarypackage.docs ! List documentation files to be installed in binarypackage.
See dh_installdocs(1).
binarypackage.emacsen-compat *® Installed into usr/lib/emacsen-commonl/packages/compat/binarypack
in binarypackage.
See dh_installemacsen(1).
binarypackage.emacsen-install >3 Installed into usr/liblemacsen-common/packageslinstalllbinarypackag
in binarypackage.
See dh_installemacsen(1).
binarypackage.emacsen-remove >3 Installed into usr/lib/lemacsen-common/packages/removelbinarypack
in binarypackage.
See dh_installemacsen(l).
binarypackage.emacsen-startup >3 Installed into usr/liblemacsen-commonl/packages/startuplbinarypack:
in binarypackage.
See dh_installemacsen(1).
binarypackage.examples *! List example files or directories to be installed into usr/shareldoclbinarypackagel
in binarypackage.
See dh_installexamples(1).
gbp.conf ! If this exists, it functions as the configuration file for the gbp command.
See gbp.conf(5), gbp(1), and git-buildpackage(1).
binarypackage.info ! List info files to be installed in binarypackage.
See dh_installinfo(1).

binarypackage.init ** Installed into etclinit.d/binarypackage in binarypackage. (deprecated)
See dh_installinit(1).

binarypackage.install ** List files which should be installed but are not installed by the dh_auto_install
command.
See dh_install(1) and dh_auto_install(1).

binarypackage.links ** List pairs of source and destination files to be symlinked. Each pair
should be put on its own line, with the source and destination separated by whitespace.
See dh_link(1).

47

file:///usr/share/doc/doc-base/doc-base.html/index.html

CHAPTER 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

binarypackage.lintian-overrides > Installed into usr/share/lintian/overrides/binarypackage in
the package build directory. This file is used to suppress erroneous lintian diagnostics.

See dh_lintian(1), lintian(1) and “Lintian User’s Manual”.
binarypackage.maintscript * If this optional file exists, debhelper uses this as the template to

generate DEBIANI/binarypackage.{pre,post}{inst,rm} files within the binary package while
adding “-- "$@”" to the dpkg-maintscript-helper(1) command.
See dh_installdeb(1) and “Chapter 6 - Package maintainer scripts and installation procedure”
in the “Debian Policy Manual”.
manpage.* *® These are manpage template files generated by the debmake command. Please
rename these to appropriate file names and update their contents.
Debian Policy requires that each program, utility, and function should have an associated
manual page included in the same package. Manual pages are written in nroff(1). If you are
new to making a manpage, use manpage.asciidoc or manpage.1 as the starting point.
binarypackage.manpages ! List man pages to be installed.
See dh_installman(1).
binarypackage.menu (deprecated, no more installed) tech-ctte #741573 decided “Debian should
use .desktop files as appropriate”.
Debian menu file installed into usrishare/menulbinarypackage in binarypackage.
See menufile(5) for its format. See dh_installmenu(1).
NEWS 2 |Installed into usrishare/doc/binarypackageINEWS.Debian.
See dh_instalichangelogs(1).
patches/* Collection of -p1 patch files which are applied to the upstream source before building
the source.
No patch files are generated by the debmake command.
See dpkg-source(1), “Section 4.4" and “Section 5.9”.

patches/series *! The application sequence of the patches/* patch files.

binarypackage.preinst *?, binarypackage.postinst *2, binarypackage.prerm 2, binarypackage.postrm -
If these optional files exist, the corresponding files are installed into the DEBIAN directory
within the binary package after enriched by debhelper. Otherwise, these files in the DEBIAN
directory within the binary package is generated by debhelper.

Whenever possible, simpler binarypackage.maintscript should be used instead.

See dh_installdeb(1) and “Chapter 6 - Package maintainer scripts and installation procedure”
in the “Debian Policy Manual”.

See also debconf-devel(7) and “3.9.1 Prompting in maintainer scripts” in the “Debian Policy
Manual”.

README.Debian *! Installed into the first binary package listed in the debian/control file as
usr/shareldoclbinarypackagelREADME.Debian.
This file provides the information specific to the Debian package.
See dh_installdocs(1).

README.source ™! Installed into the first binary package listed in the debian/control file as
usri/shareldoclbinarypackage|README.source.

If running “dpkg-source -x" on a source package doesn'’t produce the source of the package,
ready for editing, and allow one to make changes and run dpkg-buildpackage to produce a
modified package without taking any additional steps, creating this file is recommended.

See “Debian policy manual section 4.14".

binarypackage.service ™3 [fthis exists, itis installed into lib/systemd/systemlbinarypackage.service
in binarypackage.

See dh_systemd_enable(1), dh_systemd_start(1), and dh_installinit(1).
sourcelformat ** The Debian package format.

— Use “3.0 (quilt)” to make this non-native package (recommended)
- Use “3.0 (native)” to make this native package

See “SOURCE PACKAGE FORMATS” in dpkg-source(1).

48

https://lintian.debian.org/manual/index.html
https://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
https://bugs.debian.org/741573
https://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
https://www.debian.org/doc/debian-policy/ch-binary.html#prompting-in-maintainer-scripts
https://www.debian.org/doc/debian-policy/ch-source.html#source-package-handling-debian-readme-source

CHAPTER 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

sourcellintian-overrides ** These file is not installed, but are scanned by the lintian command
to provide overrides for the source package.
See dh_lintian(1) and lintian(1).

sourcellocal-options X! The dpkg-source command uses this content as its options. Notable
options are:

unapply-patches

abort-on-upstream-changes

auto-commit

single-debian-patch

This is not included in the generated source package and is meant to be committed to the
VCS of the maintainer.

See “FILE FORMATS” in dpkg-source(1).

sourcellocal-patch-header ! Free form text that is put on top of the automatic patch generated.

This is not included in the generated source package and is meant to be committed to the
VCS of the maintainer.

See “FILE FORMATS” in dpkg-source(1).

sourceloptions *® Use sourcellocal-options instead to avoid issues with NMUs. See “FILE
FORMATS” in dpkg-source(1).

sourcel/patch-header ** Use sourcellocal-patch-header instead to avoid issues with NMUs.
See “FILE FORMATS” in dpkg-source(1).

binarypackage.symbols ** The symbols files, if present, are passed to the dpkg-gensymbols
command to be processed and installed.
See dh_makeshlibs(1) and “Section 10.16"..

binarypackage.templates >3 This is the debconf templates file used for asking any questions
necessary to configure the package. See “Section 10.22".

tests/control *! This is the RFC822-style test meta data file defined in DEP-8. See autopkgtest(1)
and “Section 10.4".

TODO < |Installed into the first binary package listed in the debian/control file as usr/shareldoclbinarypackage
See dh_installdocs(1).

binarypackage.tmpfile 2 If this exists, it is installed into usr/lib/tmpfiles.d/binarypackage.conf
in binarypackage.
See dh_systemd_enable(1), dh_systemd_start(1), and dh_installinit(1).

binarypackage.upstart ** If this exists, it is installed into etclinit/package.conf in the package
build directory. (deprecated)
See dh_installinit(1).

upstream/metadata X! Per-package machine-readable metadata about upstream (DEP-12). See
“Upstream MEtadata GAthered with YAmI (UMEGAYA)”.

49

https://dep-team.pages.debian.net/deps/dep8/
https://dep-team.pages.debian.net/deps/dep12/
https://wiki.debian.org/UpstreamMetadata

Chapter 7

Quality of packaging

The quality of Debian packaging can be improved by using testing tools.
¢ lintian(1)
¢ piuparts(1)

If you follow “Chapter 4”, these are automatically executed. You are expected to fix all warnings.

7.1 Reformat debian/* files with wrap-and-sort

Itis good idea to reformat debian/* files consistently using the wrap-and-sort(1) command in devscripts
package.
Reformat debian/* files

$ wrap-and-sort -vast

7.2 Validate debian/* files with debputy
The new debputy tool 1 includes subcommands to validate (and fix) most files in debian/*.
Check correctness of files in debian/*

$ debputy lint --spellcheck

Format debian/control and debian/tests/control files

$ debputy reformat --style black

Using the “debputy reformat” command obsoletes using “wrap-and-sort -vast”.
The debputy tool also includes a language server. You can set up to get real-time feedback while
editing debian/* files with any modern editor supporting the Language Server Protocol.

1The main purpose of the debputy tool is to offer a new Debian package build paradigm. This new paradigm is beyond the
scope of this tutorial.

50

https://manpages.debian.org/unstable/dh-debputy/debputy.1.en.html
https://en.wikipedia.org/wiki/Language_Server_Protocol

Chapter 8

Sanitization of the source

There are a few cases that require sanitizing the source to prevent contamination of the generated Debian
source package.

« Non-https://www.debian.org/social_contract.html#guidelines|[DFSG] compliant content in the up-
stream source.

— Debian takes software freedom seriously and adheres to the DFSG.
» Extraneous auto-generated content in the upstream source.

— Debian packages should rebuild these under the latest system.
» Extraneous VCS content in the upstream source.

— The -i and -l options set in “Section 4.5” for the dpkg-source(1) command should avoid these.

* The -i option is intended for non-native Debian packages.
* The -1 option is intended for native Debian packages.

There are several methods to avoid including undesirable content.

8.1 Fix with Files-Excluded

This method is suitable for avoiding non-https://www.debian.org/social_contract.html#guidelines[DFSG]
compliant content in the upstream source tarball.

« List the files to be removed in the Files-Excluded stanza of the debian/copyright file.

List the URL to download the upstream tarball in the debian/watch file.
¢ Run the uscan command to download the new upstream tarball.
- Alternatively, use the “gbp import-orig --uscan --pristine-tar’ command.

« mk-origtargz invoked from uscan removes excluded files from the upstream tarball and repack it
as a clean tarball.

The resulting tarball has the version number with an additional suffix +dfsg.

See “COPYRIGHT FILE EXAMPLES” in mk-origtargz(1).

8.2 Fix with “debian/rules clean”

This method is suitable for avoiding auto-generated files by removing them in the "debian/rules clean”
target.

51

https://www.debian.org/social_contract.html#guidelines

CHAPTER 8. SANITIZATION OF THE SOURCE 8.3. FIX WITH EXTEND-DIFF-IGNORE

Note

mand by the dpkg-buildpackage command. The "dpkg-source --build” com-

@ The "debian/rules clean” target is called before the "dpkg-source --build” com-
mand ignores removed files.

8.3 Fix with extend-diff-ignore

This is for the non-native Debian package.
The problem of extraneous diffs can be fixed by ignoring changes made to specific parts of the source
tree. This is done by adding the "extend-diff-ignore=...” line in the debian/sourcel/options file.
debian/sourcel/options to exclude the config.sub, config.guess and Makefile files:

Don't store changes on autogenerated files
extend-diff-ignore = "(~|/)(config\.sub|config\.guess|Makefile)$"

Note

% This approach always works, even when you can’t remove the file. It saves you
from having to make a backup of the unmodified file just to restore it before the

next build.

Tip

If you use the debian/sourcel/local-options file instead, you can hide this setting
Iy from the generated source package. This may be useful when local non-standard

VCS files interfere with your packaging.

8.4 Fix with tar-ignore

This is for the native Debian package.
You can exclude certain files in the source tree from the generated tarball by adjusting the file glob.
Add the "tar-ignore=..." lines in the debian/sourceloptions or debian/source/local-options files.

Note
For example, if the source package of a native package needs files with the
.0 extension as part of the test data, the setting in “Section 4.5 may be
too aggressive. You can work around this by dropping the -1 option for DE-
BUILD_DPKG_BUILDPACKAGE_OPTS in “Section 4.5" and adding the "tar-
ignore=..."” lines in the debian/source/local-options file for each package.

52

CHAPTER 8. SANITIZATION OF THE SOURCE 8.5. FIX WITH “GIT CLEAN -DFX”

8.5 Fix with “git clean -dfx”

The problem of extraneous content in the second build can be avoided by restoring the source tree. This
is done by committing the source tree to the Git repository before the first build.
You can restore the source tree before the second package build. For example:

$ git reset --hard
$ git clean -dfx

This works because the dpkg-source command ignores the contents of typical VCS files in the source
tree, as specified by the DEBUILD_DPKG_BUILDPACKAGE_OPTS setting in “Section 4.5".

Tip

If the source tree is not managed by a VCS, run "git init; git add -A .; git commit”

before the first build.

53

Chapter 9

More on packaging

Let's explore more fundamentals of Debian packaging.

9.1 Package customization

All customization data for the Debian source package resides in the debian/ directory as presented in
“Section 5.7

« The Debian package build system can be customized through the debian/rules file (see “Sec-
tion 9.2").

* The Debian package installation path etc. can be customized through the addition of configuration
files such as package.install and package.docs in the debian/ directory for the dh_* commands
from the debhelper package (see “Section 6.14").

When these are not sufficient to make a good Debian package, -p1 patches of debian/patches/*
files are deployed to modify the upstream source. These are applied in the sequence defined in the
debian/patches/series file before building the package as presented in “Section 5.9”.

You should address the root cause of the Debian packaging problem in the least invasive way possi-
ble. This approach will make the generated package more robust for future upgrades.

Note

If the patch addressing the root cause is useful to the upstream project, send it
to the upstream maintainer.

9.2 Customized debian/rules

Flexible customization of the Section 6.5 is achieved by adding appropriate override_dh_* targets and
their rules.

When a special operation is required for a certain dh_foo command invoked by the dh command,
its automatic execution can be overridden by adding the makefile target override_dh_foo in the de-
bian/rules file.

The build process may be customized via the upstream provided interface such as arguments to the
standard source build system commands, such as:

« configure,

« Makefile,

¢ “python -m build”, or
* Build.PL.

54

CHAPTER 9. MORE ON PACKAGING 9.3. VARIABLES FOR DEBIAN/RULES

In this case, you should add the override_dh_auto_build target with “dh_auto_build -- arguments”.
This ensures that arguments are passed to the build system after the default parameters that dh_auto_build
usually passes.

Tip

Avoid executing bare build system commands directly if they are supported by
the dh_auto_build command.

See:

« “Section 5.7” for the basic example.

« “Section 10.3” to be reminded of the challenge involving the underlying build system.
 “Section 10.10” for multiarch customization.

e “Section 10.6” for hardening customization.

9.3 Variables for debian/rules

Some variable definitions useful for customizing debian/rules can be found in files under lusrishare/dpkgl/.
Notably:

pkg-info.mk Set DEB_SOURCE, DEB_VERSION, DEB_VERSION_EPOCH_UPSTREAM, DEB_VERSION_UPST
DEB_VERSION_UPSTREAM, and DEB_DISTRIBUTION variables obtained from dpkg-parsechangelog(1).
(useful for backport support etc..)

vendor.mk SetDEB_VENDOR and DEB_PARENT_VENDOR variables; and dpkg_vendor_derives_from
macro obtained from dpkg-vendor(1). (useful for vendor support (Debian, Ubuntu, ...).)

architecture.mk Set DEB_HOST_* and DEB_BUILD_* variables obtained from dpkg-architecture(1).

buildflags.mk Set CFLAGS, CPPFLAGS, CXXFLAGS, OBJCFLAGS, OBJCXXFLAGS, GCJFLAGS,
FFLAGS, FCFLAGS, and LDFLAGS build flags obtained from dpkg-buildflags(1).

For example, you can add an extra option to CONFIGURE_FLAGS for linux-any target architectures
by adding the following to debianirules:

DEB_HOST_ARCH_O0S ?= $(shell dpkg-architecture -gDEB_HOST_ARCH_0S)

ifeq ($(DEB_HOST_ARCH_0S), linux)
CONFIGURE_FLAGS += --enable-wayland
endif

See “Section 10.10", dpkg-architecture(1) and dpkg-buildflags(1).

9.4 New upstream release

When a new upstream release tarball foo-newvwesion.tar.gz is released, the Debian source package
can be updated by invoking commands in the old source tree as:

$ uscan
. foo-newversion.tar.gz downloaded
$ uupdate -v newversion ../foo-newversion.tar.gz

* The debian/watch file in the old source tree must be a valid one.

» This make symlink ..Ifoo_newvwesion.orig.tar.gz pointing to ../foo-newvwesion.tar.gz.

55

CHAPTER 9. MORE ON PACKAGING 9.5. MANAGE PATCH QUEUE WITH DQUILT

* Files are extracted from ../[foo-newvwesion.tar.gz to ..Ifoo-newversionl

« Files are copied from ..Ifoo-oldversionldebian/ to ..Ifoo-newvesionldebian/ .

After the above, you should refresh debian/patches/* files (see “Section 9.5”) and update debian/changelog
with the dch(1) command.

When “debian uupdate” is specified at the end of line in the debian/watch file, uscan automatically
executes uupdate(1) after downloading the tarball.

9.5 Manage patch queue with dquilt

You can add, drop, and refresh debian/patches/* files with dquilt to manage patch queue.

¢ Add a new patch debian/patches/bugname.patch recording the upstream source modification on
the file buggy _file as:

dquilt push -a

dquilt new bugname.patch
dquilt add buggy_ file
vim buggy_file

B BB

dquilt refresh
dquilt header -e
dquilt pop -a

& +H B

« Drop (== disable) an existing patch

— Comment out pertinent line in debian/patches/series
— Erase the patch itself (optional)

« Refresh debian/patches/* files to make “dpkg-source -b” work as expected after updating a De-
bian package to the new upstream release.

$ uscan; uupdate # updating to the new upstream release
$ while dquilt push; do dquilt refresh ; done
$ dquilt pop -a

- If conflicts are encountered with “dquilt push” in the above, resolve them and run “dquilt
refresh” manually for each of them.

9.6 Build commands

Here is a recap of popular low level package build commands. There are many ways to do the same
thing.

« dpkg-buildpackage = core of package building tool
 debuild = dpkg-buildpackage + lintian (build under the sanitized environment variables)
« schroot = core of the Debian chroot environment tool

« sbuild = dpkg-buildpackage on custom schroot (build in the chroot)

9.7 Note on sbuild

The sbuild(1) command is a wrapper script of dpkg-buildpackage which builds Debian binary pack-
ages in a chroot environment managed by the schroot(1) command. For example, building for Debian
unstable suite can be done as:

$ sudo sbuild -d unstable

56

CHAPTER 9. MORE ON PACKAGING 9.8. SPECIAL BUILD CASES

In schroot(1) terminology, this builds a Debian package in a clean ephemeral chroot “chroot:unstable-
amd64-sbuild” started as a copy of the clean minimal persistent chroot “source:unstable-amd64-
sbuild”.

This build environment was set up as described in “Section 4.6" with “sbuild-debian-developer-
setup -s unstable” which essentially did the following:

$ sudo mkdir -p /srv/chroot/dist-amdé4-sbuild

$ sudo sbuild-createchroot unstable /srv/chroot/unstable-amd64-sbuild http://deb <«
.debian.org/debian

$ sudo usermod -a -G sbuild <your_user_name>

$ sudo newgrp -

The schroot(1) configuration for unstable-amd64-sbuild was generated at letc/schroot/chroot.d/unstable-
amd64-sbuild. $suffix :

[unstable-amd64-shuild]

description=Debian sid/amd64 autobuilder
groups=root, sbuild

root-groups=root, shuild

profile=sbuild

type=directory
directory=/srv/chroot/unstable-amd64-sbuild
union-type=over lay

Here:

« The profile defined in the letc/schroot/sbuild/ directory is used to setup the chroot environment.
« Isrvichroot/unstable-amd64-sbuild directory holds the chroot filesystem.

« letc/sbuild/lunstable-amd64-sbuild is symlinked to /srvichroot/unstable-amd64-sbuild .

You can update this source chroot “source:unstable-amdé64-sbuild” by:

$ sudo sbuild-update -udcar unstable

You can log into this source chroot “source:unstable-amd64-sbuild” by:
$ sudo sbuild-shell unstable

Tip

If your source chroot filesystem is missing packages such as libeatmydatal,
=y ccache, and lintian for your needs, you may want to install these by logging into

it.

9.8 Special build cases

The orig.tar.gz file may need to be uploaded for a Debian revision other than 0 or 1 under some excep-
tional cases (e.g., for a security upload).

When an essential package becomes a non-essential one (e.g., adduser), you need to remove it
manually from the existing chroot environment for its use by piuparts.

9.9 Upload orig.tar.gz

When you first upload the package to the archive, you need to include the original orig.tar.gz source,
too.

If the Debian revision number of the package is either 1 or 0, this is the default. Otherwise, you must
provide the dpkg-buildpackage option -sa to the dpkg-buildpackage command.

57

https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/Chroot

CHAPTER 9. MORE ON PACKAGING 9.10. SKIPPED UPLOADS

L]

dpkg-buildpackage -sa

L]

debuild -sa

L]

sbuild

L]

For “gbp buildpackage”, edit the ~/.gbp.conf file.

Tip

On the other hand, the -sd option will force the exclusion of the original orig.tar.gz

source.

Tip
Security uploads require including the orig.tar.gz file.

9.10 Skipped uploads

If you created multiple entries in the debian/changelog while skipping uploads, you must create a proper
*_.changes file which includes all changes since the last upload. This can be done by specifying the
dpkg-buildpackage option -v with the last uploaded version, e.g., 1.2.

« dpkg-buildpackage -v1.2

 debuild -v1.2

* sbuild --debbuildopts -v1.2

« For gbp buildpackage, edit the ~/.gbp.conf file.

9.11 Bug reports

The reportbug(1l) command used for the bug report of binarypackage can be customized by the files in
usr/sharelbuglbinarypackagel.
The dh_bugfiles command installs these files from the template files in the debian/ directory.

¢ debianl/binarypackage.bug-control — usr/share/buglbinarypackagelcontrol
- This file contains some directions such as redirecting the bug report to another package.
« debianl/binarypackage.bug-presubj - usri/sharelbuglbinarypackagelpresubj
— This file is displayed to the user by the reportbug command.
« debianl/binarypackage.bug-script — usr/sharel/buglbinarypackage or usrisharelbuglbinarypackagelscript

- The reportbug command runs this script to generate a template file for the bug report.

58

CHAPTER 9. MORE ON PACKAGING 9.11. BUG REPORTS

See dh_bugdfiles(1) and “reportbug’s Features for Developers (README.developers)”

Tip

If you always remind the bug reporter of something or ask them about their situ-

ation, use these files to automate it.

59

file:///usr/share/doc/reportbug/README.developers.gz

Chapter 10

Advanced packaging

Let's describe advanced topics on Debian packaging.

10.1 Historical perspective

Let me oversimplify historical perspective of Debian packaging practices focused on the non-native pack-
aging.

Debian was started in 1990s when upstream packages were available from public FTP sites such
as Sunsite. In those early days, Debian packaging used Debian source format currently known as the
Debian source format “1.0”:

« The Debian source package ships a set of files for the Debian source package.

- package_version.orig.tar.gz : symlink to or copy of the upstream released file.
— package_version-revision.diff.gz : “One big patch” for Debian modifications.
- package_version-revision.dsc : package description.

« Several workaround approaches such as dpatch, dbs, or cdbs were deployed to manage multiple
topic patches.

The modern Debian source format “3.0 (quilt)” was invented around 2008 (see “ProjectsDebSrc3.0"):
« The Debian source package ships a set of files for the Debian source package.

— package_version.orig.tar.?z : symlink to or copy of the upstream released file.
- package_version-revision.debian.tar.?z : tarball of debian/ for Debian modifications.

* The debian/sourcel/format file contains “3.0 (quilt)”.
* Optional multiple topic patches are stored in the debian/patches/ directory.

— package_version-revision.dsc : package description.

* The standardized approach to manage multiple topic patches using quilt(1) is deployed for the
Debian source format “3.0 (quilt)”.

Most Debian packages adopted the Debian source formats “3.0 (quilt)” and “3.0 (native)”.

Now, the git(1) is popular with upstream and Debian developers. The git and its associated tools
are important part of the modern Debian packaging workflow. This modern workflow involving git will be
mentioned later in “Chapter 11”.

10.2 Current trends

Current Debian packaging practices and their trends are moving target. See:
« “Debian Trends” — Hints for “De facto standard” of Debian practices

— Build systems: dh

60

https://www.debian.org/doc/manuals/project-history/index.en.html
https://en.wikipedia.org/wiki/Sunsite
https://wiki.debian.org/Projects/DebSrc3.0
https://trends.debian.net/

CHAPTER 10. ADVANCED PACKAGING 10.3. NOTE ON BUILD SYSTEM

Debian source format: “3.0 (quilt)”
VCS: git
VCS Hosting: salsa

Rules-Requires-Root: adopted, fakeroot
Copyright format: DEP-5

« “debhelper-compat-upgrade-checklist(7) manpage” — Upgrade checklist for debhelper
« “DEP - Debian Enhancement Proposals” — Formal proposals to enhance Debian
You can also search entire Debian source code data by yourself, too.
* “Debian Sources” — code search tool
- “Debian Code Search” — wiki page describing its usage

* “Debian Code Search” — another code search tool

10.3 Note on build system

Auto-generated files of the build system may be found in the released upstream tarball. These should
be regenerated when Debian package is build. E.g.:

 “dh $@ --with autoreconf” should be used in the debian/rules if Autotools (autoconf + automake)
are used.

Some modern build system may be able to download required source codes and binary files from
arbitrary remote hosts to satisfy build requirements. Don't use this download feature. The official Debian
package is required to be build only with packages listed in Build-Depends: of the debian/control file.

10.4 Continuous integration

The dh_auto_test(1) command is a debhelper command that tries to automatically run the test suite
provided by the upstream developer during the Debian package building process.

The autopkgtest(1) command can be used after the Debian package building process. It tests gen-
erated Debian binary packages in the virtual environment using the debian/tests/control RFC822-style
metadata file as continuous integration (Cl). See:

« Documents in the lusr/share/doc/autopkgtest/ directory

« “4. autopkgtest: Automatic testing for packages” of the “Ubuntu Packaging Guide”
There are several other Cl tools on Debian for you to explore.

* The Salsa offers “Section 11.3".

* The debci package: ClI platform on top of the autopkgtest package

¢ The jenkins package: generic CI platform

10.5 Bootstrapping

Debian cares about supporting new ports or flavours. The new ports or flavours require bootstrapping op-
eration for the cross-build of the initial minimal native-building system. In order to avoid build-dependency
loops during bootstrapping, the build-dependency needs to be reduced using the DEB_BUILD_PROFILES
environment variable.

61

https://salsa.debian.org/
https://dep-team.pages.debian.net/deps/dep5/
https://dep-team.pages.debian.net/
https://sources.debian.org/
https://wiki.debian.org/DebianCodeSearch
https://dcs.zekjur.net/
https://en.wikipedia.org/wiki/Continuous_integration
https://packaging.ubuntu.com/html/auto-pkg-test.html
https://salsa.debian.org
https://wiki.debian.org/DebianBootstrap

CHAPTER 10. ADVANCED PACKAGING 10.6. COMPILER HARDENING

See Debian wiki: “BuildProfileSpec”.

Tip

If a core package foo build depends on a package bar with deep build depen-
= dency chains but bar is only used in the test target in foo, you can safely mark

the bar with <Inocheck> in the Build-depends of foo to avoid build loops.

10.6 Compiler hardening

The compiler hardening support spreading for Debian jessie (8.0) demands that we pay extra attention
to the packaging.
You should read the following references in detail.

¢ Debian wiki: “Hardening”
¢ Debian wiki: “Hardening Walkthrough”

The debmake command adds template comments to the debian/rules file as needed for DEB_BUILD_MAINT_OF
DEB_CFLAGS_MAINT_APPEND, and DEB_LDFLAGS_MAINT_APPEND (see “Chapter 5" and dpkg-
buildflags(1)).

10.7 Reproducible build

Here are some recommendations to attain a reproducible build result.
« Don’'t embed the timestamp based on the system time.
« Don't embed the file path of the build environment.
« Use “dh $@" in the debian/rules to access the latest debhelper features.
« Export the build environment as “LC_ALL=C.UTF-8" (see “Section 12.1").

 Set the timestamp used in the upstream source from the value of the debhelper-provided environ-
ment variable $SOURCE_DATE_EPOCH.

* Read more at “ReproducibleBuilds”.

- “ReproducibleBuilds Howto”.
- “ReproducibleBuilds TimestampsProposal”.
Reproducible builds are important for security and quality assurance. They allow independent verifi-
cation that no vulnerabilities or backdoors have been introduced during the build process.

The control file source-name_source-version_arch.buildinfo generated by dpkg-genbuildinfo(1)
records the build environment. See deb-buildinfo(5)

10.8 Substvar

The debian/control file also defines the package dependency in which the “variable substitutions mech-
anism” (substvar) may be used to free package maintainers from chores of tracking most of the simple
package dependency cases. See deb-substvars(5).

The debmake command supports the following substvars:

» ${misc:Depends} for all binary packages

» ${misc:Pre-Depends} for all multiarch packages

62

https://wiki.debian.org/BuildProfileSpec
https://wiki.debian.org/Hardening
https://wiki.debian.org/HardeningWalkthrough
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/ReproducibleBuilds/Howto
https://wiki.debian.org/ReproducibleBuilds/TimestampsProposal
https://www.debian.org/doc/debian-policy/ch-source.html#s-substvars
https://www.debian.org/doc/debian-policy/ch-source.html#s-substvars

CHAPTER 10. ADVANCED PACKAGING 10.9. LIBRARY PACKAGE

» ${shlibs:Depends} for all binary executable and library packages
* ${python:Depends} for all Python packages

* ${python3:Depends} for all Python3 packages

» ${perl:Depends} for all Perl packages

* ${ruby:Depends} for all Ruby packages

For the shared library, required libraries found simply by “objdump -p /path/to/program | grep NEEDED”
are covered by the shlib substvar.
For Python and other interpreters, required modules found simply looking for lines with “import”,

“use”, “require”, etc., are covered by the corresponding substvars.

For other programs which do not deploy their own substvars, the misc substvar covers their depen-
dency.

For POSIX shell programs, there is no easy way to identify the dependency and no substvar covers
their dependency.

For libraries and modules required via the dynamic loading mechanism including the “GObject in-
trospection” mechanism, there is no easy way to identify the dependency and no substvar covers their
dependency.

10.9 Library package

Packaging library software requires you to perform much more work than usual. Here are some re-
minders for packaging library software:

« The library binary package must be named as in “Section 10.17".
» Debian ships shared libraries such as lusr/lib/<triplet>/libfoo-0.1.s0.1.0.0 (see “Section 10.10").
« Debian encourages using versioned symbols in the shared library (see “Section 10.16").
« Debian doesn’t ship *.la libtool library archive files.
« Debian discourages using and shipping *.a static library files.
Before packaging shared library software, see:
e “Chapter 8 - Shared libraries” of the “Debian Policy Manual”
¢ “10.2 Libraries” of the “Debian Policy Manual”
e “6.7.2. Libraries” of the “Debian Developer’s Reference”
For the historic background study, see:
« “Escaping the Dependency Hell” 1
— This encourages having versioned symbols in the shared library.
« “Debian Library Packaging guide” 2

- Please read the discussion thread following its announcement, too.

1This document was written before the introduction of the symbols file.

2The strong preference is to use the SONAME versioned -dev package names over the single -dev package name in “Chapter
6. Development (-DEV) packages”, which does not seem to be shared by the former ftp-master (Steve Langasek). This document
was written before the introduction of the multiarch system and the symbols file.

63

https://wiki.gnome.org/Projects/GObjectIntrospection
https://wiki.gnome.org/Projects/GObjectIntrospection
https://www.debian.org/doc/debian-policy/ch-sharedlibs.html
https://www.debian.org/doc/debian-policy/ch-files.html#libraries
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-libraries
https://debconf4.debconf.org/talks/dependency-hell/img1.html
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html
https://lists.debian.org/debian-devel/2004/06/msg00069.html
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html#devpkg
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html#devpkg

CHAPTER 10. ADVANCED PACKAGING 10.10. MULTIARCH

10.10 Multiarch

Multiarch support for cross-architecture installation of binary packages (particularly i386 and amdé4, but
also other combinations) in the dpkg and apt packages introduced in Debian wheezy (7.0, May 2013),
demands that we pay extra attention to packaging.

You should read the following references in detail.

e Ubuntu wiki (upstream)
- “MultiarchSpec”
» Debian wiki (Debian situation)

- “Debian multiarch support”
- “Multiarch/Implementation”

The multiarch is enabled by using the <triplet> value such as i386-linux-gnu and x86_64-linux-gnu
in the install path of shared libraries as lusrl/lib/<triplet>/, etc..

« The <triplet> value required internally by debhelper scripts is implicitly set in themselves. The
maintainer doesn’t need to worry.

« The <triplet> value used in override_dh_* target scripts must be explicitly set in the debian/rules
file by the maintainer. The <triplet> value is stored in the $(DEB_HOST_MULTIARCH) variable in
the following debian/rules snippet example:

DEB_HOST_MULTIARCH = $(shell dpkg-architecture -qDEB_HOST_MULTIARCH)
override_dh_install:

mkdir -p packagel/1ib/$(DEB_HOST_MULTIARCH)
cp -dR tmp/1lib/. packagel/1ib/$(DEB_HOST_MULTIARCH)

See:

“Section 9.3"

“Section 16.2"
* “Section 10.12”

“dpkg-architecture(1) manpage”

10.11 Split of a Debian binary package

For well behaving build systems, the split of a Debian binary package into small ones can be realized as
follows.

< Create binary package entries for all binary packages in the debian/control file.

« List all file paths (relative to debian/tmp) in the corresponding debian/binarypackage.install files.
Please check examples in this guide:

e “Section 14.11" (Autotools based)

e “Section 14.12" (CMake based)

An intuitive and flexible method to create the initial template debian/control file defining the split of
the Debian binary packages is accommodated with the -b option. See “Section 16.2".

64

https://wiki.ubuntu.com/MultiarchSpec
https://wiki.debian.org/Multiarch
https://wiki.debian.org/Multiarch/Implementation

CHAPTER 10. ADVANCED PACKAGING 10.12. PACKAGE SPLIT SCENARIO AND ...

10.12 Package split scenario and examples

Here are some typical multiarch package split scenarios for the following upstream source examples
using the debmake command:

« a library source libfoo-1.0.tar.gz
¢ atool source bar-1.0.tar.gz written in a compiled language

 atool source baz-1.0.tar.gz written in an interpreted language

binarypackage type Architecture: | Multi- Package content
Arch:

libfool lib” any same the shared library, co-installable

libfoo-dev dev’ any same the shared library header files etc.,
co-installable

libfoo-tools bin any foreign the run-time support programs, not
co-installable

libfoo-doc doc” all foreign the shared library documentation files

bar bin any foreign the compiled program files, not
co-installable

bar-doc doc” all foreign the documentation files for the
program

baz script all foreign the interpreted program files

10.13 Multiarch library path

Debian policy requires to comply with the “Filesystem Hierarchy Standard (FHS), version 3.0”, with the
exceptions noted in “File System Structure”.

The most notable exception is the use of Jusrllib/<triplet>] instead of lusr/lib<qual>/ (e.g., /lib32/
and /lib64/) to support a multiarch library.

Table 10.2 The multiarch library path options

Classic path i386 multiarch path amd64 multiarch path
llib/ Nlib/i386-linux-gnul llib/x86_64-linux-gnu/
lusrllib/ lusrllibli386-linux-gnul lusrllib/x86_64-linux-gnu/

For Autotools based packages under the debhelper package (compat>=9), this path setting is auto-
matically taken care by the dh_auto_configure command.

For other packages with non-supported build systems, you need to manually adjust the install path
as follows.

« If “.Iconfigure” is used in the override_dh_auto_configure target in debian/rules, make sure to
replace it with “dh_auto_configure --" while re-targeting the install path from lustrl/lib/ to lusr/lib/$(DEB_HOST _|I

* Replace all occurrences of lusr/lib/ with lusr/lib/* in debianl/foo.install files.

All files installed simultaneously as the multiarch package to the same file path should have exactly
the same file content. You must be careful with differences generated by the data byte order and by the
compression algorithm.

The shared library files in the default path lusr/libl and lustrllibi<triplet>] are loaded automatically.

For shared library files in another path, the GCC option -1 must be set by the pkg-config command
to make them load properly.

65

https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://www.debian.org/doc/debian-policy/ch-opersys.html#file-system-structure

CHAPTER 10. ADVANCED PACKAGING 10.14. MULTIARCH HEADER FILE PATH

Table 10.3 The multiarch header file path options

Classic path i386 multiarch path amd64 multiarch path

lusrlinclude/ lusrlincludeli386-linux-gnu/ lusrlincludel/x86_64-linux-gnu/

lusrlincludelpackagenajriglsrlincludeli386-linux- lusrlinclude/x86_64-linux-
gnulpackagenamel gnulpackagenamel
lustrllibli386-linux- lustrllib/x86_64-linux-
gnulpackagenamel gnulpackagenamel

10.14 Multiarch header file path

GCC includes both lusrlinclude/ and lusrlincludel<triplet>/ by default on the multiarch Debian system.

If the header file is not in those paths, the GCC option -l must be set by the pkg-config command to
make "#include <foo.h>" work properly.

The use of the lustrllibl<triplet>Ipackagenamel path for the library files allows the upstream main-
tainer to use the same install script for the multiatch system with Jusr/lib/<triplet> and the biarch system
with lusr/lib<qual>/. 3

The use of the file path containing packagename enables having more than 2 development libraries
simultaneously installed on a system.

10.15 Multiarch *.pc file path

The pkg-config program is used to retrieve information about installed libraries in the system. It stores
its configuration parameters in the *.pc file and is used for setting the -l and -l options for GCC.

Table 10.4 The *.pc file path options

Classic path i386 multiarch path amd64 multiarch path
lusrllib/pkgconfig/ lusrllibli386-linux- lusrllib/x86_64-linux-
gnu/pkgconfigl/ gnu/pkgconfig/

10.16 Library symbols

The symbols support in dpkg introduced in Debian lenny (5.0, May 2009) helps us to manage the
backward ABI compatibility of the library package with the same package name. The DEBIAN/symbols
file in the binary package provides the minimal version associated with each symbol.

An oversimplified method for the library packaging is as follows.

« Extract the old DEBIAN/symbols file of the immediate previous binary package with the “dpkg-deb
-e” command.

— Alternatively, the mc command may be used to extract the DEBIAN/symbols file.
» Copy it to the debianl/binarypackage.symbols file.

- If this is the first package, use an empty content file instead.
« Build the binary package.

- If the dpkg-gensymbols command warns about some new symbols:
* Extract the updated DEBIAN/symbols file with the “dpkg-deb -e” command.
% Trim the Debian revision such as -1 in it.
* Copy it to the debianlbinarypackage.symbols file.
% Re-build the binary package.

3This path is compliant with the FHS. “Filesystem Hierarchy Standard: /ust/lib : Libraries for programming and packages”
states “Applications may use a single subdirectory under lusrllib. If an application uses a subdirectory, all architecture-dependent
data exclusively used by the application must be placed within that subdirectory.”

66

https://www.debian.org/doc/packaging-manuals/fhs/fhs-2.3.html#USRLIBLIBRARIESFORPROGRAMMINGANDPA

CHAPTER 10. ADVANCED PACKAGING 10.17. LIBRARY PACKAGE NAME

- If the dpkg-gensymbols command does not warn about new symbols:
% You are done with the library packaging.

For the details, you should read the following primary references.

“8.6.3 The symbols system” of the “Debian Policy Manual”
“dh_makeshlibs(1) manapage”

“dpkg-gensymbols(1) manapage”

“dpkg-shlibdeps(1) manapage”

“deb-symbols(5) manapage”

You should also check:

Debian wiki: “UsingSymbolsFiles”

Debian wiki: “Projects/ImprovedDpkgShlibdeps”
Debian kde team: “Working with symbols files”
“Section 14.11"

“Section 14.12"

For C++ libraries and other cases where the tracking of symbols is problematic,
follow “8.6.4 The shlibs system” of the “Debian Policy Manual”, instead. Please

make sure to erase the empty debianlbinarypackage.symbols file generated by
the debmake command. For this case, the DEBIANI/shlibs file is used.

10.17 Library package name

Let’s consider that the upstream source tarball of the libfoo library is updated from libfoo-7.0.tar.gz to
libfoo-8.0.tar.gz with a new SONAME major version which affects other packages.

The binary library package must be renamed from libfoo7 to libfoo8 to keep the unstable suite system
working for all dependent packages after the upload of the package based on the libfoo-8.0.tar.gz.

Warning

: If the binary library package isn't renamed, many dependent packages in the

unstable suite become broken just after the library upload even if a binNMU
upload is requested. The binNMU may not happen immediately after the upload
due to several reasons.

The -dev package must follow one of the following naming rules:

» Use the unversioned -dev package name: libfoo-dev

- This is the typical one for leaf library packages.
— Only one version of the library source package is allowed in the archive.

%« The associated library package needs to be renamed from libfoo7 to libfoo8 to prevent
dependency breakage in the unstable suite during the library transition.

67

https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#the-symbols-system
https://wiki.debian.org/UsingSymbolsFiles
https://wiki.debian.org/Projects/ImprovedDpkgShlibdeps
https://qt-kde-team.pages.debian.net/symbolfiles.html
https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#the-shlibs-system

CHAPTER 10. ADVANCED PACKAGING 10.18. LIBRARY TRANSITION

— This approach should be used if the simple binNMU resolves the library dependency quickly
for all affected packages. (ABI change by dropping the deprecated APl while keeping the
active API unchanged.)

— This approach may still be a good idea if manual code updates, etc. can be coordinated and
manageable within limited packages. (API change)

« Use the versioned -dev package names: libfoo7-dev and libfoo8-dev

This is typical for many major library packages.
Two versions of the library source packages are allowed simultaneously in the archive.

* Make all dependent packages depend on libfoo-dev.
* Make both libfoo7-dev and libfoo8-dev provide libfoo-dev.
* The source package needs to be renamed as libfoo7-7.0.tar.gz and libfoo8-8.0.tar.gz
respectively from libfoo-?.0.tar.gz.
* The package specific install file path including libfoo7 and libfoo8 respectively for header
files etc. needs to be chosen to make them co-installable.
Do not use this heavy handed approach, if possible.

This approach should be used if the update of multiple dependent packages require manual
code updates, etc. (APl change) Otherwise, the affected packages become RC buggy with
FTBFS (Fails To Build From Source).

Tip

If the data encoding scheme changes (e.g., latinl to utf-8), the same care as the

API change needs to be taken.

See “Section 10.9".

10.18 Library transition

When you package a new library package version which affects other packages, you must file a transition
bug report against the release.debian.org pseudo package using the reportbug command with the ben
file and wait for the approval for its upload from the Release Team.

Release team has the “transition tracker”. See “Transitions”.

Caution

@ Please make sure to rename binary packages as in “Section 10.17".

10.19 binNMU safe

A “binNMU” is a binary-only non-maintainer upload performed for library transitions etc. In a binNMU
upload, only the “Architecture: any” packages are rebuilt with a suffixed version number (e.g. version
2.3.4-3 will become 2.3.4-3+b1). The “Architecture: all’ packages are not built.

The dependency defined in the debian/control file among binary packages from the same source
package should be safe for the binNMU. This needs attention if there are both “Architecture: any” and
“Architecture: all’ packages involved in it.

« “Architecture: any” package: depends on “Architecture: any” foo package

68

https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://ben.debian.net/#_query_language
https://ben.debian.net/#_query_language
https://wiki.debian.org/Teams/ReleaseTeam
https://release.debian.org/transitions/
https://wiki.debian.org/Teams/ReleaseTeam/Transitions
https://wiki.debian.org/binNMU

CHAPTER 10. ADVANCED PACKAGING 10.20. DEBUGGING INFORMATION

- Depends: foo (= ${binary:Version})

« “Architecture: any” package: depends on “Architecture: all’ bar package
- Depends: bar (= ${source:Version})

« “Architecture: all’ package: depends on “Architecture: any” baz package

- Depends: baz (>= ${source:Version}), baz (<< ${source:Version}.0~)

10.20 Debugging information

The Debian package is built with the debugging information but packaged into the binary package after
stripping the debugging information as required by “Chapter 10 - Files” of the “Debian Policy Manual”.
See

* “6.7.9. Best practices for debug packages” of the “Debian Developer’s Reference”.
» “18.2 Debugging Information in Separate Files” of the “Debugging with gdb”

e “dh_strip(1) manapage”

 “strip(1) manapage”

 “readelf(1) manapage”

« “objcopy(1) manapage”

Debian wiki: “DebugPackage”

Debian wiki: “AutomaticDebugPackages”

Debian debian-devel post: “Status on automatic debug packages” (2015-08-15)

10.21 -dbgsym package

The debugging information is automatically packaged separately as the debug package using the dh_strip
command with its default behavior. The name of such a debug package normally has the -dbgsym suffix.

* The debianl/rules file shouldn’t explicitly contain dh_strip.

e Set the Build-Depends to debhelper-compat (>=13) while removing Build-Depends to deb-
helper in debian/control.

10.22 debconf

The debconf package enables us to configure packages during their installation in 2 main ways:
« non-interactively from the debian-installer pre-seeding.
« interactively from the menu interface (dialog, gnome, kde, ...)

- the package installation: invoked by the dpkg command
- the installed package: invoked by the dpkg-reconfigure command

All user interactions for the package installation must be handled by this debconf system using the
following files.

 debianlbinarypackage.config

— This is the debconf config script used for asking any questions necessary to configure the
package.

69

https://www.debian.org/doc/debian-policy/ch-files.html
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-dbg
https://sourceware.org/gdb/current/onlinedocs/gdb/Separate-Debug-Files.html#Separate-Debug-Files
https://wiki.debian.org/DebugPackage
https://wiki.debian.org/AutomaticDebugPackages
https://lists.debian.org/debian-devel/2015/08/msg00443.html

CHAPTER 10. ADVANCED PACKAGING 10.22. DEBCONF

« debianlbinarypackage.template

- This is the debconf templates file used for asking any questions necessary to configure the
package.

These debconf files are called by package configuration scripts in the binary Debian package

DEBIANIbinarypackage.preinst

DEBIANI/binarypackage.prerm

DEBIANI/binarypackage.postinst

DEBIANI/binarypackage.postrm

See dh_installdebconf(1), debconf(7), debconf-devel(7) and “3.9.1 Prompting in maintainer scripts”
in the “Debian Policy Manual”.

70

https://www.debian.org/doc/debian-policy/ch-binary.html#prompting-in-maintainer-scripts

Chapter 11
Packaging with git

Up to “Chapter 10", we focused on packaging operations without using Git or any other VCS. These
traditional packaging operations were based on the tarball released by the upstream as mentioned in
“Section 10.1".

Currently, the git(1) command is the de-facto platform for the VCS tool and is the essential part of
both upstream development and Debian packaging activities. (See Debian wiki “Debian git packaging
maintainer branch formats and workflows” for existing VCS workflows.)

Note
Since the non-native Debian source package uses “diff -u” as its backend tech-
nology for the maintainer modification, it can’t represent modification involving
symlink, file permissions, nor binary data (March 2022 discussion on debian-
devel@l.d.o). Please avoid making such maintainer modifications even though
these can be recorded in the Git repository.

Since VCS workflows are complicated topic and there are many practice styles, | only touch on some
key points with minimal information, here.

Salsa is the remote Git repository service with associated tools. It offers the collaboration platform
for Debian packaging activities using a custom GitLab application instance. See:

* “Section 11.1"
* “Section 11.2"
¢ “Section 11.3"”

There are 2 styles of branch names for the Git repository used for the packaging. See “Section 11.4".
There are 2 main usage styles for the Git repository for the packaging. See:

e “Section 11.5”

 “Section 11.6"

There are 2 notable Debian packaging tools for the Git repository for the packaging.
e gbp(1) and its subcommands:

— This is a tool designed to work with “Section 11.5".
- See “Section 11.7".

e dgit(1) and its subcommands:

- This is a tool designed to work with both “Section 11.6” and “Section 11.5".
— This contains a tool to upload Debian packages using the dgit server.
- See “Section 11.8".

71

https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Version_control
https://wiki.debian.org/GitPackagingSurvey
https://wiki.debian.org/GitPackagingSurvey
https://lists.debian.org/debian-devel/2022/03/msg00124.html
https://lists.debian.org/debian-devel/2022/03/msg00124.html
https://salsa.debian.org
https://en.wikipedia.org/wiki/GitLab

CHAPTER 11. PACKAGING WITH GIT 11.1. SALSA REPOSITORY

11.1 Salsa repository

It is highly desirable to host Debian source code package on Salsa. Over 90% of all Debian source code
packages are hosted on Salsa. 1

The exact VCS repository hosting an existing Debian source code package can be identified by a
metadata field Vcs-* which can be viewed with the apt-cache showsrc <package-name> com-
mand.

11.2 Salsa account setup

After signing up for an account on Salsa, make sure that the following pages have the same e-mail
address and GPG keys you have configured to be used with Debian, as well as your SSH key:

« https://salsa.debian.org/-/profile/emails
* https://salsa.debian.org/-/user_settings/gpg_keys

« https://salsa.debian.org/-/user_settings/ssh_keys

11.3 Salsa ClI service

Salsa runs Salsa ClI service as an instance of GitLab CI for “Section 10.4".
For every “git push” instances, tests which mimic tests run on the official Debian package service
can be run by setting Salsa CI configuration file “Section 6.13” as:

include:
- https://salsa.debian.org/salsa-ci-team/pipeline/raw/master/recipes/debian.yml

Customizations here

11.4 Branch names

The Git repository for the Debian packaging should have at least 2 branches:
« debian-branch to hold the current Debian packaging head.

- old style: master (or debian, main, ...)
- DEP-14 style: debianl/latest

« upstream-branch to hold the upstream releases in the imported form.

- old style: upstream
- DEP-14 style: upstream/latest

In this tutorial, old style branch names are used in examples for simplicity.

Note

% This upstream-branch may need to be created using the tarball released by the
upstream independent of the upstream Git repository since it tends to contain

automatically generated files.

The upstream Git repository content can co-exit in the local Git repository used for the Debian pack-
aging by adding its copy. E.g.:

1Use of git.debian.org or alioth.debian.org are deprecated now.

72

https://salsa.debian.org
https://salsa.debian.org
https://salsa.debian.org
https://salsa.debian.org/-/profile/emails
https://salsa.debian.org/-/user_settings/gpg_keys
https://salsa.debian.org/-/user_settings/ssh_keys
https://salsa.debian.org
https://salsa.debian.org/salsa-ci-team/pipeline
https://docs.gitlab.com/ee/ci/
https://salsa.debian.org/salsa-ci-team/pipeline
https://dep-team.pages.debian.net/deps/dep14/
https://dep-team.pages.debian.net/deps/dep14/

CHAPTER 11. PACKAGING WITH GIT 11.5. PATCH UNAPPLIED GIT REPOSITORY

$ git remote add upstreamvcs <url-upstream-git-repo>
$ git fetch upstreamvcs master:upstream-master

This allows easy cherry-picking from the upstream Git repository for bug fixes.

11.5 Patch unapplied Git repository

The patch unapplied Git repository can be summarized as:
« This seems to be the traditional practice as of 2024.

» The source tree matches extracted contents by “dpkg-source -x --skip-patches” of the Debian
source package.
- The upstream source is recorded in the Git repository without changes.
- The maintainer modified contents are confined within the debian/* directory.
- Maintainer changes to the upstream source are recorded in debian/patches/* files for the
Debian source format “3.0 (quilt)”.
 This repository style is useful for all variants of traditional workflows and gbp based workflow:

— “Section 5.7” (no patch)
- “Section 5.10"

% debian/patches/* files can also be generated using “git format-patch”, “git diff”, or “gitk”
from git commits in the through-away maintainer modification branch or from the upstream
unreleased commits.

- “Section 5.11” including the last “dquilt pop -a” step
- “Section 11.9"

¢ Use helper scripts such as dquilt(1) and gbp-pq(1) to manage data in debian/patches/* files.

- Add .pc line to the ~/.gitignore file if dquilt is used.

- Add unapply-patches and abort-on-upstream-changes lines in the debian/sourcellocal-
options file.

« Use “dpkg-source -b” to build the Debian source package.
¢ Use dput(1) to upload the Debian source package.

- Use “dgit --gbp push-source” or “dgit --gbp push” instead to upload the Debian package
via the dgit server (see “dgit-maint-gbp(7)").

Note

The debian/sourcellocal-options and debian/sourcellocal-patch-header files
% are meant to be recorded by the git command. These aren't included in the

Debian source package.

73

CHAPTER 11. PACKAGING WITH GIT 11.6. PATCH APPLIED GIT REPOSITORY

11.6 Patch applied Git repository

The patch applied Git repository can be summarized as:

* The source tree matches extracted contents by “dpkg-source -x" of the Debian source package.

The source tree is buildable and the same as what NMU maintainers see.

The source is recorded in the Git repository with maintainer changes including the debian/
directory.

Maintainer changes to the upstream source are also recorded in debian/patches/* files for
the Debian source format “3.0 (quilt)”.

Use one of workflow styles:

 dgit-maint-merge(7) workflow.

Use this if you don't intend to record topic patches in the Debian source package.

Good enough for packages only with trivial modifications to the upstream.

Only choice for packages with intertwined modification histories to the upstream

Add auto-commit and single-debian-patch lines in the debian/source/local-options file

Use “git checkout upstream; git pull” to pull the new upstream commit and use “git check-
out master ; git merge <new-version-tag>" to merge it to the master branch.

Use “dpkg-source -b” to build the Debian source package.
Use “dgit push-source” or “dgit push” for uploading the Debian package via the dgit server.
See “Section 5.12” for example.

« dgit-maint-debrebase(7) workflow.

Use this if you wish to commit maintainer changes to the patch applied Git repository with the
same granularity as patches of “Section 11.9".

Good for packages with multiple sequenced modifications to the upstream.
Use “dgit build-source” to build the Debian source package.
Use “dgit push-source” or “dgit push” for uploading the Debian package via the dgit server.

Details of this workflow are beyond the scope of this tutorial document. See “Section 11.12"
for more.

11.7 Note on gbp

The gbp command is provided by the git-buildpackage package.

¢ This command is designed to manage contents of “Section 11.5” efficiently.

« Use “gbp import-orig” to import the new upstream tar to the git repository.

The “--pristine-tar” option for the “git import-orig” command enables storing the upstream
tarball in the same git repository.

The “--uscan” option as the last argument of the “gbp import-orig” command enables down-
loading and committing the new upstream tarball into the git repository.

< Use “gbp import-dsc” to import the previous Debian source package to the git repository.

« Use “gbp dch” to generate the Debian changelog from the git commit messages.

< Use “gbp buildpackage” to build the Debian binary package from the git repository.

The sbuild package can be used as its clean chroot build backend either by configuration or
adding “--git-builder="sbuild -A -s --source-only-changes -v -d unstable’”

74

CHAPTER 11. PACKAGING WITH GIT 11.8. NOTE ON DGIT

« Use “gbp pull” to update the debian, upstream and pristine-tar branches safely from the remote
repository.

« Use “gbp pq” to manage quilt patches without using dquilt command.

« Use “gbp clone REPOSITORY_URL” to clone and set up tracking branches for debian, upstream
and pristine-tar.

Package history management with the git-buildpackage package is becoming the standard practice
for many Debian maintainers. See more at:

< “Building Debian Packages with git-buildpackage”
e “4 tips to maintain a “3.0 (quilt)” Debian source package in a VCS”
« The systemd packaging practice documentation on “Building from source”

« The workflow mentioned in dgit-maint-gbp(7) which enables to use this gbp with dgit

11.8 Note on dgit

The dgit command is provided by the dgit package.
¢ This command is designed to manage contents of “Section 11.6" efficiently.
— This enables to access the Debian package repository as if it is a git remote repository.

¢ This command supports uploading Debian packages using the dgit server from both “Section 11.5"
and “Section 11.6".

The new dgit package offers commands interact with the Debian repository as if it was a git reposi-
tory. It does not replace gbp-buildpackage and both can be used at the same time. Using plain gbp-
buildpackage is recommended for developers who want to run git push/pull on Salsa and use things
such as Salsa Cl or Merge Requests on Salsa.

For more details see the extensive guides:

« dgit-maint-gbp(7) — for the Debian source format “3.0 (quilt)’ package with its Debian Git repos-
itory which is kept usable also for people using gbp-buildpackage(1) using “Section 11.5".

« dgit-maint-merge(7) — for the Debian source format “3.0 (quilt)” package with its changes flowing
both ways between the upstream Git repository and the Debian Git repository which are tightly
coupled using “Section 11.6".

< dgit-maint-debrebase(7) — for the Debian source format “3.0 (quilt)” package with its changes
flowing mostly one way from the upstream Git repository to the Debian Git repository using “Sec-
tion 11.6”.

« dgit-maint-native(7) — for the Debian source format “3.0 (native)’ package in the Debian Git
repository. (No maintainer changes)

The dgit(1) command can push the easy-to-trace change history to the https://browse.dgit.debian.org/-
site and can upload Debian package to the Debian repository properly without using dput(1).
The concept around dgit is beyond this tutorial document. Please start reading relevant information:

 “dqit: use the Debian archive as a git remote (2015)”

e “tag2upload (2023)”

11.9 Patch by “gbp-pq” approach

For “Section 11.5", you can generate debian/patches/* files using the gbp-pg(1) command from git
commits in the through-away patch-queue branch.

Unlike dquilt which offers similar functionality as seen “Section 5.11” and “Section 9.5”, gbp-pq
doesn’t use .pcl* files to track patch state, but instead gbp-pq utilizes temporary branches in git.

75

https://honk.sigxcpu.org/projects/git-buildpackage/manual-html/gbp.html
https://raphaelhertzog.com/2010/11/18/4-tips-to-maintain-a-3-0-quilt-debian-source-package-in-a-vcs/
https://salsa.debian.org/systemd-team/systemd/-/blob/debian/master/debian/README.source
https://browse.dgit.debian.org/
https://www.chiark.greenend.org.uk/~ijackson/2015/debconf-dgit-talk/slides.pdf
https://wiki.debian.org/DebianEvents/gb/2023/MiniDebConfCambridge/Jackson?action=AttachFile&do=get&target=slides.pdf

CHAPTER 11. PACKAGING WITH GIT 11.10. MANAGE PATCH QUEUE WITH GBP-PQ

11.10 Manage patch queue with gbp-pq

You can add, drop, and refresh debian/patches/* files with gbp-pq to manage patch queue.
If the package is managed in “Section 11.5” using the git-buildpackage package, you can revise the
upstream source to fix bug as the maintainer and release a new Debian revision using gbp pq.

¢ Add a new patch recording the upstream source modification on the file buggy _file as:

$ git checkout master

$ gbp pg import

gbp:info: ... imported on 'patch-queue/master
$ vim buggy_file

$ git add buggy_file

$ git commit

$ gbp pg export

gbp:info: On 'patch-queue/master', switching to 'master'

gbp:info: Generating patches from git (master..patch-queue/master)
$ git add debian/patches/*

$ dch -i

$ git commit -a -m "Closes: #<bug_number>"

$ git tag debian/<version>-<rev>

» Drop (== disable) an existing patch

- Comment out pertinent line in debian/patches/series
- Erase the patch itself (optional)

» Refresh debian/patches/* files to make “dpkg-source -b” work as expected after updating a De-
bian package to the new upstream release.

$ git checkout master

$ gbp pg --force import # ensure patch-queue/master branch
gbp:info: ... imported on 'patch-queue/master

$ git checkout master

$ gbp import-orig --pristine-tar --uscan

tar.gz

$ gbp pg rebase
resolve conflicts and commit to patch-queue/master branch

$ gbp pg export
gbp:info: On 'patch-queue/master', switching to 'master'
gbp:info: Generating patches from git (master..patch-queue/master)
$ git add debian/patches
$ git commit -m "Update patches"
$ dch -v <newversion>-1
$ git commit -a -m "release <newversion>-1"
$ git tag debian/<newversion>-1

11.11 gbp import-dscs --debsnap

For Debian source packages named “<source-package>" recorded in the snapshot.debian.org archive,
an initial git repository managed in “Section 11.5” with all of the Debian version history can be generated
as follows.

$ gbp import-dscs --debsnap --pristine-tar <source-package>

76

http://snapshot.debian.org/

CHAPTER 11. PACKAGING WITH GIT 11.12. NOTE ON DGIT-MAINT-DEBREBASE ...

11.12 Note on dgit-maint-debrebase workflow

Here are some hints around dgit-maint-debrebase(7). 2
« Use “dgit setup-new-tree” to prepare the local git working repository.

» The first maintainer modification commit should contain files only in the debian/ directory excluding
files in the debian/patches directory.

« debian/patches/* files are generated from the maintainer modification commit history using the
“dgit quilt-fixup” command automatically invoked from “dgit build” and “dgit push”.

* Use “git-debrebase new-version <new-version-tag>" to rebase the maintainer modification com-
mit history with automatically updated debian/changelog.

« Use “git-debrebase conclude” to make a new pseudomerge (== “git merge -s ours”) to record
Debian package with clean ff-history.

See dgit-maint-debrebase(7), dgit(1) and git-debrebase(1) for more.

11.13 Quasi-native Debian packaging

The quasi-native packaging scheme packages a source without the real upstream tarball using the non-
native package format.

Tip

Some people promote this quasi-native packaging scheme even for programs
= written only for Debian since it helps to ease communication with the downstream

distros such as Ubuntu for bug fixes etc.

This quasi-native packaging scheme involves 2 preparation steps:

« Organize its source tree almost like native Debian package (see “Section 6.4”) with debian/* files
with a few exceptions:
- Make debian/sourcel/format to contain “3.0 (quilt)” instead of “3.0 (native)” .
- Make debian/changelog to contain version-revision instead of version .

» Generate missing upstream tarball preferably without debian/* files.

— For Debian source format “3.0 (quilt)”, removal of files under debian/ directory is an optional
action.

The rest is the same as the non-native packaging workflow as written in “Section 6.1”.
Although this can be done in many ways (“Section 16.4”), you can use the Git repository and “git
deborig” as:

$ cd /path/to/<dirname>
$ dch -r
. set its <version>-<revision>, e.g., 1.0-1

$ git tag -s debian/1.0-1

$ git rm -rf debian

$ git tag -s upstream/1.0

$ git commit -m upstream/1.0
$ git reset --hard HEADA

$ git deborig

$ sbuild

21 may be incorrect, here.

77

Chapter 12
Tips

Please also read insightful pages linked from “Notes on Debian” by Russ Allbery (long time Debian
developer) which have best practices for advanced packaging topics.

12.1 Build under UTF-8

The default locale of the build environment is C.
Some programs such as the read function of Python3 change their behavior depending on the locale.
Adding the following code to the debian/rules file ensures building the program under the C.UTF-8
locale.

LC_ALL := C.UTF-8
export LC_ALL

12.2 UTF-8 conversion

If upstream documents are encoded in old encoding schemes, converting them to UTF-8 is a good idea.
Use the iconv command in the libc-bin package to convert the encoding of plain text files.

$ iconv -f latinl -t utf8 foo_in.txt > foo_out.txt

Use w3m(1) to convert from HTML files to UTF-8 plain text files. When you do this, make sure to
execute it under UTF-8 locale.

$ LC_ALL=C.UTF-8 w3m -0 display_charset=UTF-8 \
-cols 70 -dump -no-graph -T text/html \
< foo_in.html > foo_out.txt

Run these scripts in the override_dh_* target of the debian/rules file.

12.3 Hints for Debugging

When you face build problems or core dumps of generated binary programs, you need to resolve them
yourself. That's debug.

This is too deep a topic to describe here. So, let me just list few pointers and hints for some typical
debug tools.

¢ Wikipedia: “core dump”

- “man core”
- Update the “letc/securityllimits.conf” file to include the following:

* soft core unlimited

78

https://www.eyrie.org/~eagle/notes/debian/
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Core_dump

CHAPTER 12. TIPS 12.3. HINTS FOR DEBUGGING

“ulimit -c unlimited” in ~/.bashrc

- “ulimit -a” to check
Press Ctrl-\ or “kill -ABRT 'PID"" to make a core dump file

« gdb - The GNU Debugger

- ‘“info gdb”
— “Debugging with GDB” in lusrishare/doc/gdb-doc/html/gdbl/index.html

« strace - Trace system calls and signals

— Use strace-graph script found in lusrishareldoc/stracelexamples/ to make a nice tree view
- “man strace”

« Itrace - Trace library calls
- “man lItrace”
e “sh -n script.sh” - Syntax check of a Shell script
« “sh -x script.sh” - Trace a Shell script
* “python3 -m py_compile script.py” - Syntax check of a Python script
* “python3 -mtrace --trace script.py” - Trace a Python script
« “perl -1 ..llibpath -c script.pl” - Syntax check of a Perl script
« “perl -d:Trace script.pl” - Trace a Perl script

- Install the libterm-readline-gnu-perl package or its equivalent to add input line editing capa-
bility with history support.

« Isof - List open files by processes

- “man Isof”
Tip
The script command records console outputs.
Tip

The screen and tmux commands used with the ssh command offer secure and

robust remote connection terminals.

A Python- and Shell-like REPL (=READ + EVAL + PRINT + LOOP) environment
= for Perl is offered by the reply command from the libreply-perl (new) package

and the re.pl command from the libdevel-repl-perl (old) package.

79

CHAPTER 12. TIPS 12.3. HINTS FOR DEBUGGING

Tip

The rlwrap and rlfe commands add input line editing capability with history sup-
port to any interactive commands. E.g. “rlwrap dash -i"” .

80

Chapter 13

Tool usages

Here are some notable tools around Debian packaging.

Note

% The descriptions in this section are intentionally brief. Prospective maintainers
are strongly encouraged to search for and read all relevant documentation asso-

ciated with these commands.

Examples here use the gz-compression. The xz-compression may be used in-

stead.

13.1 debdiff

You can compare file contents in two source Debian packages with the debdiff command.

$ debdiff old-package.dsc new-package.dsc

You can also compare file lists in two sets of binary Debian packages with the debdiff command.

$ debdiff old-package.changes new-package.changes

These are useful to identify what has been changed in the source packages and to check for inad-
vertent changes made when updating binary packages, such as unintentionally misplacing or removing
files.

Debian now enforces the source-only upload when developing packages. So there may be 2 different
*.changes files:

e package_version-revision_source.changes for the normal source-only upload

e package_version-revision_arch.changes for the binary upload

13.2 dget

You can download the set of files for the Debian source package with the dget command.

$ dget https://www.example.org/path/to/package_version-rev.dsc

81

CHAPTER 13. TOOL USAGES 13.3. MK-ORIGTARGZ

13.3 mk-origtargz

You can make the upstream tarball ..[foo-newversion.tar.[xg]z accessible from the Debian source tree
as ..Ifoo_newversion.orig.tar.[xg]z. This command is useful for renaming and symlinking the upstream
tarball to the expected Debian naming convention.

13.4 origtargz

You can fetch the pre-existing orig tarball of a Debian package from various sources, and unpack it with
origtargz command.
This is basically for -2, -3, ... revisions.

13.5 git deborig

If the upstream project is hosted in a Git repository without an official tarball release, you can generate
its orig tarball from the git repository for use by the Debian source package. Execute “git deborig” from
the root of the checked-out source tree.

This is basically for -1 revisions.

13.6 dpkg-source -b

The “dpkg-source -b” command packs the upstream source tree into the Debian source package.

It expects a series of patches in the debian/patches/ directory and their application sequence in
debian/patches/series.

It is compatible with dquilt (see “Section 4.4") operations and understands the patch application
status from the existence of .pclapplied-patches.

The dpkg-buildpackage command invokes “dpkg-source -b”".

13.7 dpkg-source -x

The “dpkg-source -x” command extracts the source tree and applies the patches in the debian/patches/
directory using the sequence specified in debian/patches/series to the upstream source tree. It also
adds .pclapplied-patches. (See “Section 11.6".)

The “dpkg-source -x --skip-patches” command extracts source tree only. It doesn’'tadd .pclapplied-
patches. (See “Section 11.5".)

Both extracted source trees are ready for building Debian binary packages with dpkg-buildpackage,
dbuild, sbuild, etc..

13.8 debc

You should install generated packages with the debc command to test it locally.

$ debc package_version-rev_arch.changes

13.9 piuparts

You should install generated packages with the piuparts command to test it automatically.

$ sudo piuparts package_version-rev_arch.changes

82

CHAPTER 13. TOOL USAGES 13.10. BTS

Note

This is a very slow process with remote APT package repository access.

13.10 bts

After uploading the package, you will receive bug reports. It is an important duty of a package main-
tainer to manage these bugs properly, as described in “5.8. Handling bugs” of the “Debian Developer’s

Reference”.
The bts command is a handy tool to manage bugs on the “Debian Bug Tracking System”.

$ bts severity 123123 wishlist , tags -1 pending

83

https://www.debian.org/doc/manuals/developers-reference/pkgs.html#bug-handling
https://www.debian.org/Bugs/

Chapter 14

More Examples

There is an old Latin saying: “fabricando fit faber” (“practice makes perfect”).

It is highly recommended to practice and experiment with all the steps of Debian packaging with
simple packages. This chapter provides you with many upstream cases for your practice.

This should also serve as introductory examples for many programming topics.

¢ Programming in the POSIX shell, Python3, and C.
¢ Method to create a desktop GUI program launcher with icon graphics.
¢ Conversion of a command from CLI to GUI.

« Conversion of a program to use gettext for internationalization and localization: POSIX shell and
C sources.

« Overview of many build systems: Makefile, Python, Autotools, and CMake.
Please note that Debian takes a few things seriously:

¢ Free software (a.k.a. Libre software)

 Stability and security of OS

* Universal OS realized via:

- free choice for upstream sources,
- free choice of CPU architectures, and
- free choice of Ul languages.
The typical packaging example presented in “Chapter 5” is the prerequisite for this chapter.

Some details are intentionally left vague in the following sections. Please try to read the pertinent
documentation and practice yourself to find them out.

Tip

The best source of a packaging example is the current Debian archive itself.
Please use the “Debian Code Search” service to find pertinent examples.

14.1 Cherry-pick templates

Here is an example of creating a simple Debian package from a zero-content source in an empty directory.
This is a good way to obtain all the template files without cluttering the upstream source tree you are
working on.
Let's assume this empty directory to be debhello-0.1.

84

https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Internationalization_and_localization
https://codesearch.debian.net/

CHAPTER 14. MORE EXAMPLES

14.1. CHERRY-PICK TEMPLATES

$ mkdir debhello-0.1
$ tree

+-- debhello-0.1

2 directories, 0 files

Let’s generate the maximum amount of template files.

Let's also use the “-p debhello -t -u 0.1 -r 1" options to create the missing upstream tarball with default

-x3 and T options.
$ cd /path/to/debhello-0.1

$ debmake -p debhello -t -u 0.1 -r 1

I: set parameters

Let’s inspect generated template files.

$ cd /path/to
$ tree

+-- debhello-0.1
+-- debian

+-- README.Debian
+-- README.source
+-- changelog
+-- clean
+-- control
+-- copyright

+-- debhello.bug-control.ex
+-- debhello.bug-presubj.ex
+-- debhello.bug-script.ex
+-- debhello.conffiles.ex

+-- debhello.cron.d.ex

I

I

I

I

I

I

I

I

I

I

I

I

| +-- debhello.cron.daily.ex

| +-- debhello.cron.hourly.ex
| +-- debhello.cron.monthly.ex
| +-- debhello.cron.weekly.ex
| +-- debhello.default.ex

| +-- debhello.emacsen-install.ex
| +-- debhello.emacsen-remove.ex
| +-- debhello.emacsen-startup.ex
| +-- debhello.lintian-overrides.ex
| +-- debhello.service.ex

| +-- debhello.tmpfile.ex

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

+-- dirs

+-- gbp.conf
+-- install
+-- links

+-- maintscript.ex
+-- manpage.1l.ex

+-- manpage.asciidoc.ex

+-- manpage.md.ex
+-- manpage.sgml.ex
+-- manpage.xml.ex
+-- patches

| +-- series

+-- postinst.ex
+-- postrm.ex

+-- preinst.ex

+-- prerm.ex

+-- rules

+-- salsa-ci.yml
+-- source

85

CHAPTER 14. MORE EXAMPLES 14.2. NO MAKEFILE (SHELL, CLI)

| +-- format

| +-- lintian-overrides.ex
| +-- local-options.ex

| +-- local-patch-header.ex
| +-- options.ex

| +-- patch-header.ex

+-- tests
I

+--

+-- control
upstream
| +-- metadata
| +-- watch

+-- debhello-0.1.tar.xz
+-- debhello_0.1.orig.tar.xz -> debhello-0.1.tar.xz

7 directories, 50 files

Now you can copy any of these generated template files in the debhello-0.1/debianl directory to your
package as needed while renaming them as needed.

14.2 No Makefile (shell, CLI)

Here is an example of creating a simple Debian package from a POSIX shell CLI program without its
build system.

Let's assume this upstream tarball to be debhello-0.2.tar.gz.

This type of source has no automated means and files must be installed manually.

For example:

tar -xzmf debhello-0.2.tar.gz
cd debhello-0.2
sudo cp scripts/hello /bin/hello

B +H B

Let’s get this source as tar file from a remote site and make it the Debian package.
Download debhello-0.2.tar.gz

$ wget http://www.example.org/download/debhello-0.2.tar.gz

$ tar -xzmf debhello-0.2.tar.gz
$ tree

+-- debhello-0.2
+-- README.md
+-- data
[+-- hello.desktop
| +-- hello.png

I
I
I
I
I
| [+-- hello.1
I
I
+

+-- man
+-- scripts
+-- hello
-- debhello-0.2.tar.gz

5 directories, 6 files

Here, the POSIX shell script hello is a very simple one.
hello (v=0.2)

$ cat debhello-0.2/scripts/hello
#!/bin/sh -e

echo "Hello from the shell!"

echo ""

echo -n "Type Enter to exit this program:
read X

86

CHAPTER 14. MORE EXAMPLES 14.2. NO MAKEFILE (SHELL, CLI)

Here, hello.desktop supports the “Desktop Entry Specification”.
hello.desktop (v=0.2)

$ cat debhello-0.2/data/hello.desktop
[Desktop Entry]
Name=Hello
Name[fr]=Bonjour
Comment=Greetings
Comment[fr]=Salutations
Type=Application
Keywords=hello
Exec=hello
Terminal=true
Icon=hello.png
Categories=Utility;

Here, hello.png is the icon graphics file.
Let's package this with the debmake command. Here, the -b’:sh’ option is used to specify that the
generated binary package is a shell script.

$ cd /path/to/debhello-0.2
$ debmake -b':sh' -x1
: set parameters

]

sanity check of parameters

pkg="debhello", ver="0.2", rev="1"

*** gstart packaging in "debhello-0.2". ***

provide debhello_0.2.orig.tar.?z for non-native Debian package
pwd = "/path/to"

: $ ln -sf debhello-0.2.tar.gz debhello_0.2.0orig.tar.gz

pwd = "/path/to/debhello-0.2"

parse binary package settings: :sh

binary package=debhello Type=script / Arch=all M-A=foreign
: analyze the source tree

build_type = Unknown

scan source for copyright+license text and file extensions
25 %, ext = md

HHHMHHKHHKHKHHKHHH

Let's inspect notable template files generated.
The source tree after the basic debmake execution. (v=0.2)

$ cd /path/to
$ tree

+-- debhello-0.2
| +-- README.md

| +-- data

| [+-- hello.desktop
| [+-- hello.png

| +-- debian

| [+-- README.Debian
| | +-- README.source
| [+-- changelog

| [+-- clean

| | +-- control

| [+-- copyright
(.
(.
(.
(.
(.
(.
(.
(.

+-- dirs
+-- gbp.conf
+-- install
+-- links

+-- patches

| +-- series
+-- rules

+-- salsa-ci.yml

87

https://www.freedesktop.org/wiki/Specifications/desktop-entry-spec/

CHAPTER 14. MORE EXAMPLES 14.2. NO MAKEFILE (SHELL, CLI)

[+-- source
| | +-- format
[| +-- local-options.ex
[| +-- local-patch-header.ex
| +-- tests
[| +-- control
[+-- upstream
[| +-- metadata

[+-- watch

+-- man

| +-- hello.1

+-- scripts

| +-- hello

+-- debhello-0.2.tar.gz

+-- debhello_0.2.orig.tar.gz -> debhello-0.2.tar.gz

10 directories, 26 files

debian/rules (template file, v=0.2):

$ cd /path/to/debhello-0.2

$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1

%
dh $@

This is essentially the standard debian/rules file with the dh command. Since this is the script pack-
age, this template debian/rules file has no build flag related contents.
debian/control (template file, v=0.2):

$ cat debian/control
Source: debhello
Section: unknown

Priority: optional

Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:

debhelper-compat (= 13),
Standards-Version: 4.7.0

Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello

Architecture: all

Multi-Arch: foreign

Depends:
${misc:Depends},

Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

Since this is the shell script package, the debmake command sets “Architecture: all’ and “Multi-
Arch: foreign”. Also, it sets required substvar parameters as “Depends: ${misc:Depends}’. These
are explained in “Chapter 6”.

Since this upstream source lacks the upstream Makefile, that functionality needs to be provided by
the maintainer. This upstream source contains only a script file and data files and no C source files;
the build process can be skipped but the install process needs to be implemented. For this case, this
is achieved cleanly by adding the debian/install and debian/manpages files without complicating the
debianl/rules file.

Let's make this Debian package better as the maintainer.

debian/rules (maintainer version, v=0.2):

88

CHAPTER 14. MORE EXAMPLES

14.2.

NO MAKEFILE (SHELL, CLI)

$ cd /path/to/debhello-0.2
$ vim debian/rules
hack, hack, hack,
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1

%:
dh $@

debian/control (maintainer version, v=0.2):

$ vim debian/control
hack, hack, hack,

$ cat debian/control
Source: debhello
Section: devel

Priority: optional

Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:

debhelper-compat (= 13),
Standards-Version: 4.6.2

Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello

Architecture: all

Multi-Arch: foreign

Depends:
${misc:Depends},

Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Warning

the lintian error may cause a build failure.

® If you leave “Section: unknown” in the template debian/control file unchanged,

debian/install (maintainer version, v=0.2):

$ vim debian/install

hack, hack, hack,
$ cat debian/install
data/hello.desktop usr/share/applications
data/hello.png usr/share/pixmaps
scripts/hello usr/bin

debian/manpages (maintainer version, v=0.2):

$ vim debian/manpages
hack, hack, hack,

$ cat debian/manpages

man/hello.1

There are several other template files under the debian/ directory. These also need to be updated.

Template files under debian/. (v=0.2):

$ rm -f debian/clean debian/dirs debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches

89

CHAPTER 14. MORE EXAMPLES

14.2. NO MAKEFILE (SHELL, CLI)

$ tree -F debian
debian/

+-- README.Debian
+-- changelog

+-- control

+-- copyright

+-- gbp.conf

+-- install

+-- manpages

+-- rules*

+-- salsa-ci.yml
+-- source/

| +-- format
+-- tests/

| +-- control
+-- upstream/

| +-- metadata
+-- watch

4 directories, 13 files

You can create a non-native Debian package using the debuild command (or its equivalents) in this
source tree. The command output is very verbose and explains what it does as follows.

$ cd /path/to/debhello-0.2

$ debuild

dpkg-buildpackage -us -uc -ui -i

dpkg-buildpackage: info: source
dpkg-buildpackage: info: source
dpkg-buildpackage: info: source
dpkg-buildpackage: info: source
dpkg-source -i --before-build .

package debhello

version 0.2-1

distribution unstable

changed by Osamu Aoki <osamu@debian.org>

dpkg-buildpackage: info: host architecture amdé64

debian/rules clean
dh clean
dh_clean

rm -f debian/debhelper-build-stamp

debian/rules binary
dh binary

dh_update_autotools_config

dh_autoreconf

create-stamp debian/debhelper-build-stamp

dh_prep

rm -f -- debian/debhello.substvars
rm -fr -- debian/.debhelper/generated/debhello/ debian/debhello/ debi...
dh_auto_install --destdir=debian/debhello/

Finished running lintian.

Let's inspect the result.

The generated files of debhello version 0.2 by the debuild command:

$ cd /path/to
$ tree -FL 1

+-- debhello-0.2

+-- debhello-0.2.t

+-- debhello_0.2-1

+-- debhello_0.2-1

+-- debhello_0.2-1_all.deb
+-- debhello_0.2-1

+-- debhello_0.2-1

+-- debhello_0.2-1

+-- debhello_0.2

90

CHAPTER 14. MORE EXAMPLES

14.2. NO MAKEFILE (SHELL, CLI)

2 directories, 8 files

You see all the generated files.

* The debhello_0.2.orig.tar.gz file is a symlink to the upstream tarball.

The debhello_0.2-1.debian.tar.xz file contains the maintainer generated contents.

The debhello_0.2-1.dsc file is the meta data file for the Debian source package.

The debhello_0.2-1_all.deb file is the Debian binary package.

The debhello_0.2-1_amdé64.build file is the build log file.

The debhello_0.2-1_amd64.buildinfo file is the meta data file generated by dpkg-genbuildinfo(1).

* The debhello_0.2-1_amdé64.changes file is the meta data file for the Debian binary package.

The debhello_0.2-1.debian.tar.xz file contains the Debian changes to the upstream source as fol-

lows.

The compressed archive contents of debhello_0.2-1.debian.tar.xz:

$ tar -tzf debhello-0.2.tar.gz

debhello-0.
debhello-0.
debhello-0.

debhello-0

2/
2/data/

2/data/hello.desktop

.2/data/hello.png
debhello-0.
debhello-0.
debhello-0.
debhello-0.
debhello-0.

2/man/

2/man/hello.1

2/scripts/

2/scripts/hello

2/README . md

$ tar --xz -tf debhello_0.2-1.debian.tar.xz

debian/

debian/README.Debian
debian/changelog
debian/control
debian/copyright

debian/gbp.

conf

debian/install
debian/manpages
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/

debian/upstream/metadata

debian/watch

The debhello_0.2-1_amd64.deb file contains the files to be installed as follows.
The binary package contents of debhello_0.2-1_all.deb:

$ dpkg -c
drwxr-xr-x
drwxr-xr-x
drwxr-Xxr-x
-rWXr -Xr-X
drwxr-xr-x
drwxr-xr-x
-rwW-r--r--
drwxr-xr-x
drwxr-xr-x
-rw-r--r--

debhello_0.2-1_all.deb

root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root

./

./usr/

./usr/bin/

./usr/bin/hello

./usr/share/

./usr/share/applications/
./usr/share/applications/hello.desktop
./usr/share/doc/
./usr/share/doc/debhello/
./usr/share/doc/debhello/README.Debian

91

CHAPTER 14. MORE EXAMPLES 14.3. MAKEFILE (SHELL, CLI)

-rw-r--r-- root/root/usr/share/doc/debhello/changelog.Debian.gz
-rw-r--r-- root/root/usr/share/doc/debhello/copyright
drwxr-xr-x root/root/usr/share/man/

drwxr-xr-x root/root/usr/share/man/manl/

-rw-r--r-- root/root/usr/share/man/manli/hello.1l.gz

drwxr-xr-x root/root/usr/share/pixmaps/

-rw-r--r-- root/root/usr/share/pixmaps/hello.png

Here is the generated dependency list of debhello_0.2-1_all.deb.
The generated dependency list of debhello_0.2-1_all.deb:

$ dpkg -f debhello_0.2-1_all.deb pre-depends \
depends recommends conflicts breaks

(No extra dependency packages required since this is a POSIX shell program.)

Note

tainer provided one debian/hello.png, editing debian/install isn’t enough. When
you add debian/hello.png, you need to add a line “include-binaries” to de-
bian/sourceloptions since PNG is a binary file. See dpkg-source(1).

If you wish to replace upstream provided PNG file data/hello.png with main-

14.3 Makefile (shell, CLI)

Here is an example of creating a simple Debian package from a POSIX shell CLI program using the
Makefile as its build system.

Let's assume its upstream tarball to be debhello-1.0.tar.gz.

This type of source is meant to be installed as a non-system file as:

$ tar -xzmf debhello-1.0.tar.gz
$ cd debhello-1.0
$ make install

Debian packaging requires changing this “make install” process to install files to the target system
image location instead of the normal location under lusr/local.

Let’s get the source and make the Debian package.

Download debhello-1.0.tar.gz

$ wget http://www.example.org/download/debhello-1.0.tar.gz

$ tar -xzmf debhello-1.0.tar.gz
$ tree

+-- debhello-1.0
| +-- Makefile

| +-- README.md

| +-- data

| | +-- hello.desktop
| [+-- hello.png

| +-- man

| [+-- hello.1

| +-- scripts

| +-- hello

+-- debhello-1.0.tar.gz

5 directories, 7 files

Here, the Makefile uses $(DESTDIR) and $(prefix) properly. All other files are the same as in “Sec-
tion 14.2” and most of the packaging activities are the same.
Makefile (v=1.0)

92

CHAPTER 14. MORE EXAMPLES 14.3. MAKEFILE (SHELL, CLI)

$ cat debhello-1.0/Makefile
prefix = /usr/local

all:
: # do nothing

install:

install -D scripts/hello \
$(DESTDIR)$(prefix)/bin/hello

install -m 644 -D data/hello.desktop \
$(DESTDIR)S$(prefix)/share/applications/hello.desktop

install -m 644 -D data/hello.png \
$(DESTDIR)$(prefix)/share/pixmaps/hello.png

install -m 644 -D man/hello.1 \
$(DESTDIR)$(prefix)/share/man/mani/hello.1

clean:
: # do nothing

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/manl/hello.1

.PHONY: all install clean distclean uninstall

Let's package this with the debmake command. Here, the -b’:sh’ option is used to specify that the
generated binary package is a shell script.

$ cd /path/to/debhello-1.0
$ debmake -b':sh' -x1
I: set parameters

sanity check of parameters

pkg="debhello", ver="1.0", rev="1"

*** start packaging in "debhello-1.0". ***

provide debhello_1.0.orig.tar.?z for non-native Debian package
pwd = "/path/to"
: $ ln -sf debhello-1.0.tar.gz debhello_1.0.o0rig.tar.gz
pwd = "/path/to/debhello-1.0"
parse binary package settings: :sh
binary package=debhello Type=script / Arch=all M-A=foreign
: analyze the source tree
build_type = make
scan source for copyright+license text and file extensions
25 %, ext = md

HHHHKHKMHHKMHHKHHH H

Let’s inspect the notable template files generated.
debian/rules (template file, v=1.0):

$ cd /path/to/debhello-1.0

$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1

%
dh $@

#override_dh_auto_install:

93

CHAPTER 14. MORE EXAMPLES 14.4. PYPROJECT.TOML (PYTHONS, CLI)

dh_auto_install -- prefix=/usr

#override_dh_install:
dh_install --list-missing -X.pyc -X.pyo

Let's make this Debian package better as the maintainer.
debian/rules (maintainer version, v=1.0):

$ cd /path/to/debhello-1.0
$ vim debian/rules
. hack, hack, hack,
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1

%
dh $@

override_dh_auto_install:
dh_auto_install -- prefix=/usr

Since this upstream source has the proper upstream Makefile, there is no need to create debianl/install
and debian/manpages files

The debianl/control file is exactly the same as the one in “Section 14.2".

There are several other template files under the debian/ directory. These also need to be updated.

Template files under debian/. (v=1.0):

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches

$ tree -F debian

debian/

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- gbp.conf

+-- rules*

+-- salsa-ci.yml

+-- source/

| +-- format

+-- tests/

| +-- control

+-- upstream/

| +-- metadata

+-- watch

4 directories, 11 files

The rest of the packaging activities are practically the same as the ones in “Section 14.2”.

14.4 pyproject.toml (Python3, CLI)

Here is an example of creating a simple Debian package from a Python3 CLI program using pypro-
ject.toml.

Let’s get the source and make the Debian package.

Download debhello-1.1.tar.gz

$ wget http://www.example.org/download/debhello-1.1.tar.gz

$ tar -xzmf debhello-1.1.tar.gz
$ tree

94

CHAPTER 14. MORE EXAMPLES 14.4. PYPROJECT.TOML (PYTHONS, CLI)

+-- debhello-1.1
+-- LICENSE
+-- MANIFEST.in
+-- README.md
+-- data
[+-- hello.desktop
[+-- hello.png
+-- manpages

I
I
I
I
I
I
I
I
| +-- pyproject.toml
I
I
I
I
+

[+-- hello.1
+-- src
+-- debhello
+-- __init__ .py
+-- main.py
-- debhello-1.1.tar.gz

6 directories, 10 files

Here, the content of this debhello source tree as follows.
pyproject.toml (v=1.1) — PEP 517 configuration

$ cat debhello-1.1/pyproject.toml

[build-system]

requires = ["setuptools >= 61.0"] # REQUIRED if [build-system] table is used...
build-backend = "setuptools.build_meta" # If not defined, then legacy behavi...

[project]
name = "debhello"
version = "1.1.0"

description = "Hello Python (CLI)"

readme = {file = "README.md", content-type = "text/markdown"}
requires-python = ">=3.12"

license = {file = "LICENSE.txt"}

keywords = ["debhello"]

authors = [

{name = "Osamu Aoki", email = "osamu@debian.org" },
1
maintainers = [

{name = "Osamu Aoki", email = "osamu@debian.org" },
1

classifiers = [
"Development Status :: 5 - Production/Stable",

"Intended Audience :: Developers",

"Topic :: System :: Archiving :: Packaging",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3",

"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",

Others

"Operating System :: POSIX :: Linux",

"Natural Language :: English",
J
[project.urls]
"Homepage" = "https://salsa.debian.org/debian/debmake"
"Bug Reports" = "https://salsa.debian.org/debian/debmake/issues"
"Source" = "https://salsa.debian.org/debian/debmake"
[project.scripts]
hello = "debhello.main:main"
[tool.setuptools]
package-dir = {"" = "src"}

packages = ["debhello"]
include-package-data = true

MANIFEST.in (v=1.1) — for tar-ball.

95

CHAPTER 14. MORE EXAMPLES 14.4.

PYPROJECT.TOML (PYTHONS, CLI)

$ cat debhello-1.1/MANIFEST.in
include data/*
include manpages/*

srcldebhello/__init__.py (v=1.1)
$ cat debhello-1.1/src/debhello/__init__ .py

debhello program (CLI)

mnn

srcldebhello/main.py (v=1.1) — command entry point

$ cat debhello-1.1/src/debhello/main.py

debhello program

import sys
__version__ = '1.1.0'
def main(): # needed for console script

print(' —========= Hello PythonS ::::::::::')
print('argv = {}'.format(sys.argv))

print('version = {}'.format(debhello.__version__))

return

if __name__ == "__main__":
sys.exit(main())

Let's package this with the debmake command. Here, the -b’:py3’ option is used to specify the
generated binary package containing Python3 script and module files.

$ cd /path/to/debhello-1.1
$ debmake -b':py3' -x1
: set parameters

—

sanity check of parameters
pkg="debhello", ver="1.1", rev="1"
*** start packaging in "debhello-1.1". ***

pwd = "/path/to"

pwd = "/path/to/debhello-1.1"
parse binary package settings: :py3

: analyze the source tree
setuptools build system.

HHEZHHHHHMHKHHHH

Let's inspect the notable template files generated.
debian/rules (template file, v=1.1):

$ cd /path/to/debhello-1.1
$ cat debian/rules
#!/usr/bin/make -f

provide debhello_1.1.orig.tar.?z for non-native Debian package

: $ ln -sf debhello-1.1.tar.gz debhello_1.1.o0rig.tar.gz

binary package=debhello Type=python3 / Arch=all M-A=foreign

build_type = Python (pyproject.toml: PEP-518, PEP-621, PEP-660)
scan source for copyright+license text and file extensions

You must remove unused comment lines for the released package.

#export DH_VERBOSE = 1

%:
dh $@ --with python3 --buildsystem=pybuild

96

CHAPTER 14. MORE EXAMPLES 14.4. PYPROJECT.TOML (PYTHONS, CLI)

This is essentially the standard debian/rules file with the dh command.

The use of the “--with python3” option invokes dh_python3 to calculate Python dependencies, add
maintainer scripts to byte compiled files, etc. See dh_python3(1).

The use of the “--buildsystem=pybuild” option invokes various build systems for requested Python
versions in order to build modules and extensions. See pybuild(1).

debian/control (template file, v=1.1):

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
dh-python,
pybuild-plugin-pyproject,
python3-all,
python3-setuptools,
Standards-Version: 4.7.0
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
${misc:Depends},
${python3:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

Since this is the Python3 package, the debmake command sets “Architecture: all” and “Multi-
Arch: foreign”. Also, it sets required substvar parameters as “Depends: ${python3:Depends},
${misc:Depends}’. These are explained in “Chapter 6".

Let's make this Debian package better as the maintainer.

debian/rules (maintainer version, v=1.1):

$ cd /path/to/debhello-1.1
$ vim debian/rules
. hack, hack, hack,

$ cat debian/rules
#!/usr/bin/make -f

export PYBUILD_NAME=debhello
export PYBUILD_VERBOSE=1
export DH_VERBOSE=1

%:
dh $@ --with python3 --buildsystem=pybuild

debian/control (maintainer version, v=1.1):

$ vim debian/control
. hack, hack, hack,

$ cat debian/control
Source: debhello
Section: devel

Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
pybuild-plugin-pyproject,
python3-all,

97

CHAPTER 14. MORE EXAMPLES 14.4. PYPROJECT.TOML (PYTHONS, CLI)

Standards-Version: 4.6.2

Rules-Requires-Root: no

Vcs-Browser: https://salsa.debian.org/debian/debmake-doc
Vcs-Git: https://salsa.debian.org/debian/debmake-doc.git
Homepage: https://salsa.debian.org/debian/debmake-doc

Package: debhello
Architecture: all
Depends:
${misc:Depends},
${python3:Depends},
Description: Simple packaging example for debmake
This is an example package to demonstrate Debian packaging using
the debmake command.

The generated Debian package uses the dh command offered by the
debhelper package and the dpkg source format 3.0 (quilt)'.

There are several other template files under the debian/ directory. These also need to be updated.

This debhello command comes with the upstream-provided manpage and desktop file but the up-
stream pyproject.toml doesn'tinstall them. So you need to update debianlinstall and debian/manpages
as follows:

debianlinstall (maintainer version, v=1.1):

$ vim debian/copyright
hack, hack, hack,
$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2024 Osamu Aoki <osamu@debian.org>
License: Expat

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

debian/manpages (maintainer version, v=1.1):

$ vim debian/install
hack, hack, hack,
$ cat debian/install
data/hello.desktop usr/share/applications
data/hello.png usr/share/pixmaps

The rest of the packaging activities are practically the same as the ones in “Section 14.3".
Template files under debian/. (v=1.1):

$ rm -f debian/clean debian/dirs debian/links

98

CHAPTER 14. MORE EXAMPLES 14.5. MAKEFILE (SHELL, GUI)

$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- gbp.conf

+-- install

+-- manpages

+-- rules*

+-- salsa-ci.yml

+-- source/

| +-- format

+-- tests/

| +-- control

+-- upstream/

| +-- metadata

+-- watch

4 directories, 13 files

Here is the generated dependency list of debhello_1.1-1_all.deb.
The generated dependency list of debhello_1.1-1_all.deb:

$ dpkg -f debhello_1.1-1 all.deb pre-depends \
depends recommends conflicts breaks
Depends: python3:any

14.5 Makefile (shell, GUI)

Here is an example of creating a simple Debian package from a POSIX shell GUI program using the
Makefile as its build system.

This upstream is based on “Section 14.3" with enhanced GUI support.

Let's assume its upstream tarball to be debhello-1.2.tar.gz.

Let’s get the source and make the Debian package.

Download debhello-1.2.tar.gz

$ wget http://www.example.org/download/debhello-1.2.tar.gz

$ tar -xzmf debhello-1.2.tar.gz
$ tree

+-- debhello-1.2
+-- Makefile
+-- README.md
+-- data
[+-- hello.desktop
| +-- hello.png

I
I
I
I
I
I
| [+-- hello.1
I
I
+

+-- man
+-- scripts
+-- hello
-- debhello-1.2.tar.gz

5 directories, 7 files

Here, the hello has been re-written to use the zenity command to make this a GTK+ GUI program.
hello (v=1.2)

$ cat debhello-1.2/scripts/hello
#!/bin/sh -e

99

CHAPTER 14. MORE EXAMPLES 14.5. MAKEFILE (SHELL, GUI)

zenity --info --title "hello" --text "Hello from the shell!"

Here, the desktop file is updated to be Terminal=false as a GUI program.
hello.desktop (v=1.2)

$ cat debhello-1.2/data/hello.desktop
[Desktop Entry]
Name=Hello
Name[fr]=Bonjour
Comment=Greetings
Comment[fr]=Salutations
Type=Application
Keywords=hello
Exec=hello
Terminal=false
Icon=hello.png
Categories=Utility;

All other files are the same as in “Section 14.3".
Let's package this with the debmake command. Here, the “-b’:sh’ option is used to specify that the
generated binary package is a shell script.

$ cd /path/to/debhello-1.2
$ debmake -b':sh' -x1
I: set parameters

: sanity check of parameters

pkg="debhello", ver="1.2", rev="1"

*** start packaging in "debhello-1.2". ***

provide debhello_1.2.orig.tar.?z for non-native Debian package
pwd = "/path/to"

: $ ln -sf debhello-1.2.tar.gz debhello_1.2.o0rig.tar.gz

pwd = "/path/to/debhello-1.2"

parse binary package settings: :sh

binary package=debhello Type=script / Arch=all M-A=foreign
: analyze the source tree

build_type = make

scan source for copyright+license text and file extensions
25 %, ext = md

HHHHHKMHHKMHHKHKHHH

Let’s inspect the notable template files generated.
debian/control (template file, v=1.2):

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.0
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello

Architecture: all

Multi-Arch: foreign

Depends:

${misc:Depends},

Description: auto-generated package by debmake

This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

100

CHAPTER 14. MORE EXAMPLES 14.5. MAKEFILE (SHELL, GUI)

Let's make this Debian package better as the maintainer.
debian/control (maintainer version, v=1.2):

$ vim debian/control
hack, hack, hack,

$ cat debian/control

Source: debhello

Section: devel

Priority: optional

Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:

debhelper-compat (= 13),
Standards-Version: 4.6.2

Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
zenity,
${misc:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Please note the manually added zenity dependency.

The debian/rules file is exactly the same as the one in “Section 14.3".

There are several other template files under the debian/ directory. These also need to be updated.
Template files under debian/. (v=1.2):

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches

$ tree -F debian

debian/

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- gbp.conf

+-- rules*

+-- salsa-ci.yml

+-- source/

| +-- format

+-- tests/

| +-- control

+-- upstream/

| +-- metadata

+-- watch

4 directories, 11 files

The rest of the packaging activities are practically the same as in “Section 14.3".
Here is the generated dependency list of debhello_1.2-1_all.deb.
The generated dependency list of debhello_1.2-1_all.deb:

$ dpkg -f debhello_1.2-1_all.deb pre-depends \
depends recommends conflicts breaks
Depends: zenity

101

CHAPTER 14. MORE EXAMPLES 14.6. PYPROJECT.TOML (PYTHONS3, GUI)

14.6 pyproject.toml (Python3, GUI)

Here is an example of creating a simple Debian package from a Python3 GUI program using pypro-
ject.toml.

Let's assume this upstream tarball to be debhello-1.3.tar.gz.

Let’s get the source and make the Debian package.

Download debhello-1.3.tar.gz

$ wget http://www.example.org/download/debhello-1.3.tar.gz

$ tar -xzmf debhello-1.3.tar.gz
$ tree

+-- debhello-1.3
+-- LICENSE
+-- MANIFEST.in
+-- README.md
+-- data
[+-- hello.desktop
[+-- hello.png
+-- manpages

I
I
I
I
I
I
I
I
| +-- pyproject.toml
I
I
I
I
+

[+-- hello.1
+-- src
+-- debhello
+-- __init__ .py
+-- main.py
-- debhello-1.3.tar.gz

6 directories, 10 files

Here, the content of this debhello source tree as follows.
pyproject.toml (v=1.3) — PEP 517 configuration

$ cat debhello-1.3/pyproject.toml

[build-system]

requires = ["setuptools >= 61.0"] # REQUIRED if [build-system] table is used...
build-backend = "setuptools.build_meta" # If not defined, then legacy behavi...

[project]
name = "debhello"
version = "1.3.0"

description = "Hello Python (GUI)"

readme = {file = "README.md", content-type = "text/markdown"}
requires-python = ">=3.12"

license = {file = "LICENSE.txt"}

keywords = ["debhello"]

authors = [

{name = "Osamu Aoki", email = "osamu@debian.org" },
]
maintainers = [

{name = "Osamu Aoki", email = "osamu@debian.org" },
]

classifiers = [
"Development Status :: 5 - Production/Stable",

"Intended Audience :: Developers",

"Topic :: System :: Archiving :: Packaging",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3",

"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",

Others
"Operating System :: POSIX :: Linux",
"Natural Language :: English",

102

CHAPTER 14. MORE EXAMPLES 14.6. PYPROJECT.TOML (PYTHONS3, GUI)

]

[project.urls]

"Homepage" = "https://salsa.debian.org/debian/debmake"
"Bug Reports" = "https://salsa.debian.org/debian/debmake/issues"
"Source" = "https://salsa.debian.org/debian/debmake"
[project.scripts]

hello = "debhello.main:main"

[tool.setuptools]

package-dir = {"" = "src"}

packages = ["debhello"]

include-package-data = true

MANIFEST.in (v=1.3) — for tar-ball.

$ cat debhello-1.3/MANIFEST.1in
include data/*
include manpages/*

srcldebhello/__init__.py (v=1.3)
$ cat debhello-1.3/src/debhello/__init__ .py

mnn

debhello program (GUI)

srcldebhello/main.py (v=1.3) — command entry point

$ cat debhello-1.3/src/debhello/main.py
#!/usr/bin/python3
from gi.repository import Gtk

__version__ = '1.3.0'
class TopWindow(Gtk.wWindow):

def __init_ (self):
Gtk.Window.__init__ (self)
self.title = "Hello World!"
self.counter = 0
self.border_width = 10
self.set_default_size(400, 100)
self.set_position(Gtk.wWindowPosition.CENTER)
self.button = Gtk.Button(label="Click me!")
self.button.connect("clicked", self.on_button_clicked)
self.add(self.button)
self.connect("delete-event", self.on_window_destroy)

def on_window_destroy(self, *args):
Gtk.main_quit(*args)

def on_button_clicked(self, widget):
self.counter += 1
widget.set_label("Hello, World!\nClick count = %i" % self.counter)

def main():
window = TopWindow()
window.show_all()
Gtk.main()

if __name__ == '__main__"':
main()

Let's package this with the debmake command. Here, the -b’:py3’ option is used to specify that the
generated binary package contains Python3 script and module files.

$ cd /path/to/debhello-1.3

103

CHAPTER 14. MORE EXAMPLES 14.6. PYPROJECT.TOML (PYTHONS3, GUI)

$ debmake -b':py3' -x1
I: set parameters

sanity check of parameters

pkg="debhello", ver="1.3", rev="1"

*** start packaging in "debhello-1.3". ***

provide debhello_1.3.orig.tar.?z for non-native Debian package
pwd = "/path/to"

: $ ln -sf debhello-1.3.tar.gz debhello_1.3.o0rig.tar.gz

pwd = "/path/to/debhello-1.3"

parse binary package settings: :py3

binary package=debhello Type=python3 / Arch=all M-A=foreign

: analyze the source tree

setuptools build system.

build_type = Python (pyproject.toml: PEP-518, PEP-621, PEP-660)
scan source for copyright+license text and file extensions

HHEHHHHHMHKHHKHH

The result is practically the same as in “Section 14.4",
Let's make this Debian package better as the maintainer.
debian/rules (maintainer version, v=1.3):

$ cd /path/to/debhello-1.3
$ vim debian/rules
hack, hack, hack,

$ cat debian/rules
#!/usr/bin/make -f

export PYBUILD_NAME=debhello
export PYBUILD_VERBOSE=1
export DH_VERBOSE=1

%:
dh $@ --with python3 --buildsystem=pybuild

debian/control (maintainer version, v=1.3):

$ vim debian/control
hack, hack, hack,

$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:

debhelper-compat (= 13),
pybuild-plugin-pyproject,

python3-all,
Standards-Version: 4.6.2

Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello

Architecture: all

Multi-Arch: foreign

Depends:
girl.2-gtk-3.0,
python3-gi,

${misc:Depends},

${python3:Depends},

Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Please note the manually added python3-gi and girl.2-gtk-3.0 dependencies.
The rest of the packaging activities are practically the same as in <pyproject>>.

104

CHAPTER 14. MORE EXAMPLES 14.7. MAKEFILE (SINGLE-BINARY PACKAGE)

Here is the generated dependency list of debhello_1.3-1_all.deb.
The generated dependency list of debhello_1.3-1_all.deb:

$ dpkg -f debhello_1.3-1_all.deb pre-depends \
depends recommends conflicts breaks
Depends: girl.2-gtk-3.0, python3-gi, python3:any

14.7 Makefile (single-binary package)

Here is an example of creating a simple Debian package from a simple C source program using the
Makefile as its build system.

This is an enhanced upstream source example for “Chapter 5”. This comes with the manpage, the
desktop file, and the desktop icon. This also links to an external library libm to be a more practical
example.

Let’'s assume this upstream tarball to be debhello-1.4.tar.gz.

This type of source is meant to be installed as a non-system file as:

$ tar -xzmf debhello-1.4.tar.gz
$ cd debhello-1.4

$ make

$ make install

Debian packaging requires changing this “make install” process to install files into the target system
image location instead of the normal location under lusr/local.

Let’s get the source and make the Debian package.

Download debhello-1.4.tar.gz

$ wget http://www.example.org/download/debhello-1.4.tar.gz

$ tar -xzmf debhello-1.4.tar.gz
$ tree

+-- debhello-1.4
+-- LICENSE
+-- Makefile
+-- README.md
+-- data
[+-- hello.desktop
[+-- hello.png

I
I
I
I
I
I
I
| [+-- hello.1
I
I
I
+

+-- man
+-- src
+-- config.h
+-- hello.c
-- debhello-1.4.tar.gz

5 directories, 9 files

Here, the contents of this source are as follows.
srclhello.c (v=1.4):

$ cat debhello-1.4/src/hello.c
#include "config.h"
#include <math.h>
#include <stdio.h>

int

main()

{
printf("Hello, I am " PACKAGE_AUTHOR "!\n");
printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
return 0;

}

105

CHAPTER 14. MORE EXAMPLES 14.7. MAKEFILE (SINGLE-BINARY PACKAGE)

srclconfig.h (v=1.4):

$ cat debhello-1.4/Makefile
prefix = /usr/local

all: src/hello

src/hello: src/hello.c
$(CC) $(CPPFLAGS) $(CFLAGS) $(LDFLAGS) -0 $@ $/ -1m

install: src/hello

install -D src/hello \
$(DESTDIR)$(prefix)/bin/hello

install -m 644 -D data/hello.desktop \
$(DESTDIR)$(prefix)/share/applications/hello.desktop

install -m 644 -D data/hello.png \
$(DESTDIR)$(prefix)/share/pixmaps/hello.png

install -m 644 -D man/hello.1 \
$(DESTDIR)$(prefix)/share/man/manli/hello.1

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/manl/hello.1

.PHONY: all install clean distclean uninstall

Makefile (v=1.4):

$ cat debhello-1.4/src/config.h
#define PACKAGE_AUTHOR "Osamu Aoki"

Please note that this Makefile has the proper install target for the manpage, the desktop file, and
the desktop icon.
Let's package this with the debmake command.

$ cd /path/to/debhello-1.4
$ debmake -x1
: set parameters

—

: sanity check of parameters

: pkg="debhello", ver="1.4", rev="1"

*** start packaging in "debhello-1.4". ***

: provide debhello_1.4.orig.tar.?z for non-native Debian package
: pwd = "/path/to"

: $ ln -sf debhello-1.4.tar.gz debhello_1.4.o0rig.tar.gz

: pwd = "/path/to/debhello-1.4"

: parse binary package settings:

: binary package=debhello Type=bin / Arch=any M-A=foreign

: analyze the source tree

: build_type = make

: scan source for copyright+license text and file extensions
33 %, ext = ¢

HHHHHHHKMHHKHHHH

The result is practically the same as in “Section 5.6".

Let's make this Debian package, which is practically the same as in “Section 5.7”, better as the main-
tainer.

If the DEB_BUILD_MAINT_OPTIONS environment variable is not exported in debian/rules, lintian
warns “W: debhello: hardening-no-relro usr/bin/hello” for the linking of libm.

106

CHAPTER 14. MORE EXAMPLES 14.8. MAKEFILE.IN + CONFIGURE ...

The debianl/control file makes it exactly the same as the one in “Section 5.7”, since the libm library
is always available as a part of libc6 (Priority: required).

There are several other template files under the debian/ directory. These also need to be updated.

Template files under debian/. (v=1.4):

rm -f debian/clean debian/dirs debian/links
rm -f debian/README.source debian/source/*.ex
rm -rf debian/patches

tree -F debian

debian/

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- gbp.conf

+-- install

+-- rules*

+-- salsa-ci.yml

+-- source/

| +-- format

+-- tests/

| +-- control

+-- upstream/

| +-- metadata

+-- watch

B BB H

4 directories, 12 files

The rest of the packaging activities are practically the same as the one in “Section 5.8".
Here is the generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=1.4):

$ dpkg -f debhello-dbgsym_1.4-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 1.4-1)

$ dpkg -f debhello_1.4-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: 1libc6 (>= 2.34)

14.8 Makefile.in + configure (single-binary package)

Here is an example of creating a simple Debian package from a simple C source program using Make-
file.in and configure as its build system.

This is an enhanced upstream source example for “Section 14.7”. This also links to an external
library, libm, and this source is configurable using arguments to the configure script, which generates
the Makefile and src/config.h files.

Let’'s assume this upstream tarball to be debhello-1.5.tar.gz.

This type of source is meant to be installed as a non-system file, for example, as:

tar -xzmf debhello-1.5.tar.gz
cd debhello-1.5

./configure --with-math

make

make install

& BH P BB

Let's get the source and make the Debian package.
Download debhello-1.5.tar.gz

$ wget http://www.example.org/download/debhello-1.5.tar.gz

$ tar -xzmf debhello-1.5.tar.gz
$ tree

107

CHAPTER 14. MORE EXAMPLES

14.8. MAKEFILE.IN + CONFIGURE ...

+-- debhello-1.5
| +-- LICENSE

| +-- Makefile.in

| +-- README.md

| +-- configure

| +-- data

| [+-- hello.desktop
| [+-- hello.png

| +-- man

| | +-- hello.1

| +-- src

| +-- hello.c

+-- debhello-1.5.tar.gz

5 directories, 9 files

Here, the contents of this source are as follows.
srclhello.c (v=1.5):

$ cat debhello-1.5/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>
int
main()

{
printf("Hello, I am " PACKAGE_AUTHOR "!I\n");
#ifdef WITH_MATH

printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));

#else

printf("I can't do MATH!\n");
#endif

return 0;
}

Makefile.in (v=1.5):

$ cat debhello-1.5/Makefile.in
prefix = @prefix@

all: src/hello

src/hello: src/hello.c
$(CC) @VERBOSE@ \
$(CPPFLAGS) \
$(CFLAGS) \
$(LDFLAGS) \
-0 $@ $M N\
@LINKLIB@

install: src/hello
install -D src/hello \
$(DESTDIR)$(prefix)/bin/hello
install -m 644 -D data/hello.desktop \

$(DESTDIR)$(prefix)/share/applications/hello.desktop

install -m 644 -D data/hello.png \

$(DESTDIR)$(prefix)/share/pixmaps/hello.png

install -m 644 -D man/hello.1 \

$(DESTDIR)$(prefix)/share/man/manli/hello.1

clean:
-rm -f src/hello

108

CHAPTER 14. MORE EXAMPLES 14.8. MAKEFILE.IN + CONFIGURE ...

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/manli/hello.1

.PHONY: all install clean distclean uninstall

configure (v=1.5):

$ cat debhello-1.5/configure
#!/bin/sh -e
default values
PREFIX="/usr/local"
VERBOSE=""
WITH_MATH="0Q"

LINKLIB=""
PACKAGE_AUTHOR="John Doe"

parse arguments
while ["${1}" != "" 7; do
VAR="${1%=*}" # Drop suffix =*
VAL="${1#*=}" # Drop prefix *=
case "${VAR}" in
--prefix)
PREFIX="${VAL}"
--verbose|-v)
VERBOSE="-v"

rrs

--with-math)
WITH_MATH="1"
LINKLIB=""-1m"
i

--author)
PACKAGE_AUTHOR="${VAL}"
T

)
echo "W: Unknown argument: ${1}"

esac

shift

done

setup configured Makefile and src/config.h
sed -e "s,@prefix@, ${PREFIX}," \
-e "s,@VERBOSE@, ${VERBOSE}," \
-e "s,@LINKLIB@, ${LINKLIB}," \
<Makefile.in >Makefile
if ["${WITH_MATH}" = 1]; then
echo "#define WITH_MATH" >src/config.h
else
echo "/* not defined: WITH_MATH */" >src/config.h
fi
echo "#define PACKAGE_AUTHOR \"${PACKAGE_AUTHOR}\"" >>src/config.h

Please note that the configure command replaces strings with @...@ in Makefile.in to produce
Makefile and creates src/config.h.
Let's package this with the debmake command.

$ cd /path/to/debhello-1.5
$ debmake -x1
I: set parameters

109

CHAPTER 14. MORE EXAMPLES 14.9. AUTOTOOLS (SINGLE-BINARY ...

sanity check of parameters

pkg="debhello", ver="1.5", rev="1"

*** gstart packaging in "debhello-1.5". ***

provide debhello_1.5.0orig.tar.?z for non-native Debian package
pwd = "/path/to"

: $ ln -sf debhello-1.5.tar.gz debhello_1.5.o0rig.tar.gz

pwd = "/path/to/debhello-1.5"

parse binary package settings:

binary package=debhello Type=bin / Arch=any M-A=foreign

: analyze the source tree

build_type = configure

scan source for copyright+license text and file extensions
17 %, ext = in

HHHMHHKMHHKHKHMHKHHH

The result is similar to “Section 5.6” but not exactly the same.
Let’s inspect the notable template files generated.
debian/rules (template file, v=1.5):

$ cd /path/to/debhello-1.5

$ cat debian/rules
#1/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -W1,-01
%:

dh $@

Let's make this Debian package better as the maintainer.
debian/rules (maintainer version, v=1.5):

$ cd /path/to/debhello-1.5
$ vim debian/rules
hack, hack, hack,

$ cat debian/rules
#!/usr/bin/make -f

export DH_VERBOSE = 1

export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND -W1, - -as-needed

%

dh $@
override_dh_auto_configure:
dh_auto_configure -- \
--with-math \

--author="0Osamu Aoki"

There are several other template files under the debian/ directory. These also need to be updated.
The rest of the packaging activities are practically the same as the one in “Section 5.8”.

14.9 Autotools (single-binary package)

Here is an example of creating a simple Debian package from a simple C source program using Autotools
= Autoconf and Automake (Makefile.am and configure.ac) as its build system.

This source usually comes with the upstream auto-generated Makefile.in and configure files, too.
This source can be packaged using these files as in “Section 14.8” with the help of the autotools-dev
package.

110

CHAPTER 14. MORE EXAMPLES 14.9. AUTOTOOLS (SINGLE-BINARY ...

The better alternative is to regenerate these files using the latest Autoconf and Automake packages
if the upstream provided Makefile.am and configure.ac are compatible with the latest version. This is
advantageous for porting to new CPU architectures, etc. This can be automated by using the “--with
autoreconf” option for the dh command.

Let’'s assume this upstream tarball to be debhello-1.6.tar.gz.

This type of source is meant to be installed as a non-system file, for example, as:

tar -xzmf debhello-1.6.tar.gz
cd debhello-1.6

autoreconf -ivf # optional
./configure --with-math

make

make install

B O R BB

Let's get the source and make the Debian package.
Download debhello-1.6.tar.gz

$ wget http://www.example.org/download/debhello-1.6.tar.gz

$ tar -xzmf debhello-1.6.tar.gz
$ tree

+-- debhello-1.6
+-- LICENSE
+-- Makefile.am
+-- README.md
+-- configure.ac
+-- data
| +-- hello.desktop
[+-- hello.png

I
I
I
I
I
I
I
I
| | +-- Makefile.am
I
I
I
I
+

+-- man
[+-- hello.1
+-- src
+-- Makefile.am
+-- hello.c
-- debhello-1.6.tar.gz

5 directories, 11 files

Here, the contents of this source are as follows.
srclhello.c (v=1.6):

$ cat debhello-1.6/src/hello.c
#include "config.h"
#ifdef WITH_MATH
1include <math.h>
#endif
#include <stdio.h>

int
main()

{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");

#ifdef WITH_MATH
printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));

#else

printf("I can't do MATH!\n");
#endif

return 0;
}

Makefile.am (v=1.6):

$ cat debhello-1.6/Makefile.am
SUBDIRS = src man

111

CHAPTER 14. MORE EXAMPLES 14.9. AUTOTOOLS (SINGLE-BINARY ...

$ cat debhello-1.6/man/Makefile.am
dist_man_MANS = hello.1

$ cat debhello-1.6/src/Makefile.am
bin_PROGRAMS = hello

hello_SOURCES = hello.c

configure.ac (v=1.6):

$ cat debhello-1.6/configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello], [2.1], [foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])
AM_INIT_AUTOMAKE([foreign])
Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
echo "Add --with-math option functionality to ./configure"
AC_ARG_WITH([math],
[AS_HELP_STRING([--with-math],
[compile with math library @<:@default=yes@:>@])],
[1,
[with_math="yes"]
)
echo "==== withval
echo "==== with_math
m4sh if-else construct
AS_IF([test "x$with_math" != "xno"], [
echo "==== Check include: math.h"
AC_CHECK_HEADER(math.h, [], [
AC_MSG_ERROR([Couldn't find math.h.])
1)
echo "==== Check library: 1ibm"
AC_SEARCH_LIBS(atan, [m])
#AC_CHECK_LIB(m, atan)

\"$withval\""
\"$with_math\""

echo "==== Build with LIBS := \"$LIBS\""
AC_DEFINE(WITH_MATH, [1], [Build with the math library])
1. L
echo "==== Skip building with math.h."
AH_TEMPLATE(WITH_MATH, [Build without the math library])
1
Checks for programs.
AC_PROG_CC
AC_CONFIG_FILES([Makefile
man/Makefile
src/Makefile])
AC_OUTPUT
Tip

Without “foreign” strictness level specified in AM_INIT_AUTOMAKE() as above,
= automake defaults to “gnu” strictness level requiring several files in the top-level
directory. See “3.2 Strictness” in the automake document.

Let's package this with the debmake command.

$ cd /path/to/debhello-1.6
$ debmake -x1

112

CHAPTER 14. MORE EXAMPLES 14.10. CMAKE (SINGLE-BINARY PACKAGE)

]

set parameters

sanity check of parameters

pkg="debhello", ver="1.6", rev="1"

*** start packaging in "debhello-1.6". ***

provide debhello_1.6.o0rig.tar.?z for non-native Debian package
pwd = "/path/to"

: $ ln -sf debhello-1.6.tar.gz debhello_1.6.0rig.tar.gz

pwd = "/path/to/debhello-1.6"

parse binary package settings:

binary package=debhello Type=bin / Arch=any M-A=foreign

: analyze the source tree

build_type = Autotools with autoreconf

scan source for copyright+license text and file extensions
33 %, ext = am

HHHHHKMHHKMHHKHKHH H

The result is similar to “Section 14.8” but not exactly the same.
Let’s inspect the notable template files generated.
debian/rules (template file, v=1.6):

$ cd /path/to/debhello-1.6
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND -Wall -pedantic

#export DEB_LDFLAGS_MAINT_APPEND -W1, -01
% :
dh $@ --with autoreconf
#override_dh_install:
dh_install --list-missing -X.la -X.pyc -X.pyo

Let's make this Debian package better as the maintainer.
debian/rules (maintainer version, v=1.6):

$ cd /path/to/debhello-1.6
$ vim debian/rules
hack, hack, hack,
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -W1, --as-needed
%:
dh $@ --with autoreconf

override_dh_auto_configure:
dh_auto_configure -- \
--with-math

There are several other template files under the debian/ directory. These also need to be updated.
The rest of the packaging activities are practically the same as the one in “Section 5.8”.

14.10 CMake (single-binary package)

Here is an example of creating a simple Debian package from a simple C source program using CMake
(CMakeLists.txt and some files such as config.h.in) as its build system.

113

CHAPTER 14. MORE EXAMPLES 14.10. CMAKE (SINGLE-BINARY PACKAGE)

The cmake command generates the Makefile file based on the CMakeLists.txt file and its -D op-
tion. It also configures the file as specified in its configure_file(...) by replacing strings with @...@ and
changing the #cmakedefine ... line.

Let's assume this upstream tarball to be debhello-1.7.tar.gz.

This type of source is meant to be installed as a non-system file, for example, as:

make install

$ tar -xzmf debhello-1.7.tar.gz

$ cd debhello-1.7

$ mkdir obj-x86_64-1linux-gnu # for out-of-tree build
$ cd obj-x86_64-1inux-gnu

$ cmake ..

$ make

$

Let’s get the source and make the Debian package.
Download debhello-1.7.tar.gz

$ wget http://www.example.org/download/debhello-1.7.tar.gz

$ tar -xzmf debhello-1.7.tar.gz
$ tree

+-- debhello-1.7
+-- CMakelLists.txt

+-- LICENSE
+-- README.md
+-- data

[+-- hello.desktop
[+-- hello.png

I
I
I
I
I
I
I
I
| [+-- hello.1
I
I
I
I
+

+-- man
[+-- CMakelLists.txt
+-- src
+-- CMakeLists.txt
+-- config.h.in
+-- hello.c
-- debhello-1.7.tar.gz

5 directories, 11 files

Here, the contents of this source are as follows.
srclhello.c (v=1.7):

$ cat debhello-1.7/src/hello.c
#include "config.h"
#ifdef WITH_MATH
1include <math.h>
#endif
#include <stdio.h>
int
main()
{
printf("Hello, I am " PACKAGE_AUTHOR "!\n");
#ifdef WITH_MATH
printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));

#else

printf("I can't do MATH!\n");
#endif

return 0O,
}

srclconfig.h.in (v=1.7):

$ cat debhello-1.7/src/config.h.in
/* name of the package author */

114

CHAPTER 14. MORE EXAMPLES 14.10. CMAKE (SINGLE-BINARY PACKAGE)

#define PACKAGE_AUTHOR "@PACKAGE_AUTHOR@"
/* math library support */
#cmakedefine WITH_MATH

CMakelLists.txt (v=1.7):

$ cat debhello-1.7/CMakelLists.txt
cmake_minimum_required(VERSION 2.8)
project(debhello)
set (PACKAGE_AUTHOR "Osamu Aoki")
add_subdirectory(src)
add_subdirectory(man)
$ cat debhello-1.7/man/CMakelLists.txt
install(
FILES ${CMAKE_CURRENT_SOURCE_DIR}/hello.1
DESTINATION share/man/manl
)
$ cat debhello-1.7/src/CMakelLists.txt
Always define HAVE_CONFIG_H
add_definitions(-DHAVE_CONFIG_H)
Interactively define WITH_MATH
option(WITH_MATH "Build with math support" OFF)
#variable_watch(WITH_MATH)
Generate config.h from config.h.in
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/config.h.in"
"${CMAKE_CURRENT_BINARY_DIR}/config.h"

include_directories("${CMAKE_CURRENT_BINARY_DIR}")
add_executable(hello hello.c)
install(TARGETS hello

RUNTIME DESTINATION bin

)

Let's package this with the debmake command.

$ cd /path/to/debhello-1.7
$ debmake -x1

I: set parameters

I: sanity check of parameters

I: pkg="debhello", ver="1.7", rev="1"

I: *** start packaging in "debhello-1.7". ***

I: provide debhello_1.7.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"

I: $ ln -sf debhello-1.7.tar.gz debhello_1.7.orig.tar.gz

I: pwd = "/path/to/debhello-1.7"

I: parse binary package settings:

I: binary package=debhello Type=bin / Arch=any M-A=foreign

I: analyze the source tree

I: build_type = Cmake

I: scan source for copyright+license text and file extensions
I: 33 %, ext = text

The result is similar to “Section 14.8” but not exactly the same.
Let's inspect the notable template files generated.
debian/rules (template file, v=1.7):

$ cd /path/to/debhello-1.7
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all

115

CHAPTER 14. MORE EXAMPLES 14.10. CMAKE (SINGLE-BINARY PACKAGE)

#export DEB_CFLAGS_MAINT_APPEND -Wall -pedantic

#export DEB_LDFLAGS_MAINT_APPEND -W1, -01
%:
dh $@
#override_dh_auto_configure:
dh_auto_configure -- \
-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_TARGET_MULTIARCH)"

debian/control (template file, v=1.7):

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
cmake,
debhelper-compat (= 13),
Standards-Version: 4.7.0
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello
Architecture: any

Multi-Arch: foreign

Depends:

${misc:Depends},

${shlibs:Depends},

Description: auto-generated package by debmake

This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

Let's make this Debian package better as the maintainer.
debian/rules (maintainer version, v=1.7):

$ cd /path/to/debhello-1.7
$ vim debian/rules
hack, hack, hack,

$ cat debian/rules
#!/usr/bin/make -f

export DH_VERBOSE = 1

export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -W1, --as-needed
%:

dh $@

override_dh_auto_configure:
dh_auto_configure -- -DWITH-MATH=1

debian/control (maintainer version, v=1.7):

$ vim debian/control
hack, hack, hack,
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
cmake,

116

CHAPTER 14. MORE EXAMPLES 14.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

debhelper-compat (= 13),
Standards-Version: 4.6.2

Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

There are several other template files under the debian/ directory. These also need to be updated.
The rest of the packaging activities are practically the same as the one in “Section 14.8".

14.11 Autotools (multi-binary package)

Here is an example of creating a set of Debian binary packages including the executable package, the
shared library package, the development file package, and the debug symbol package from a simple C
source program using Autotools (Autoconf and Automake, which use Makefile.am and configure.ac as
their input files) as its build system.

Let's package this in a similar way to “Section 14.9".

Let's assume this upstream tarball to be debhello-2.0.tar.gz.

This type of source is meant to be installed as a non-system file, for example, as:

tar -xzmf debhello-2.0.tar.gz
cd debhello-2.0

autoreconf -ivf # optional
./configure --with-math

make

make install

R A R A

Let’s get the source and make the Debian package.
Download debhello-2.0.tar.gz

$ wget http://www.example.org/download/debhello-2.0.tar.gz

$ tar -xzmf debhello-2.0.tar.gz
$ tree

+-- debhello-2.0
| +-- LICENSE

| +-- Makefile.am

| +-- README.md

| +-- configure.ac

| +-- data

| [+-- hello.desktop
| | +-- hello.png

| +-- lib

| [+-- Makefile.am

| | +-- sharedlib.c

| | +-- sharedlib.h
I

I

I

I

I

I

+

+-- man
| +-- Makefile.am
[+-- hello.1
+-- src
+-- Makefile.am
+-- hello.c
-- debhello-2.0.tar.gz

117

CHAPTER 14. MORE EXAMPLES 14.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

6 directories, 14 files

Here, the contents of this source are as follows.
src/hello.c (v=2.0):

$ cat debhello-2.0/src/hello.c
#include "config.h"
#include <stdio.h>
#include <sharedlib.h>

int

main()

{
printf("Hello, I am " PACKAGE_AUTHOR "!I\n");
sharedlib();
return 0O,

}

lib/sharedlib.h and lib/sharedlib.c (v=1.6):

$ cat debhello-2.0/1lib/sharedlib.h
int sharedlib();

$ cat debhello-2.0/1lib/sharedlib.c
#include <stdio.h>

int

sharedlib()

{
printf("This is a shared library!\n");
return 0;

}

Makefile.am (v=2.0):

$ cat debhello-2.0/Makefile.am
recursively process “Makefile.am™ in SUBDIRS
SUBDIRS = 1lib src man

$ cat debhello-2.0/man/Makefile.am
manpages (distributed in the source package)
dist_man_MANS = hello.1

$ cat debhello-2.0/1ib/Makefile.am
libtool librares to be produced
1ib_LTLIBRARIES = libsharedlib. la

source files used for 1lib_LTLIBRARIES
libsharedlib_1la_SOURCES = sharedlib.c

C pre-processor flags used for 1lib_LTLIBRARIES
#libsharedlib_1la_CPPFLAGS =

Headers files to be installed in <prefix>/include
include_HEADERS = sharedlib.h

Versioning Libtool Libraries with version triplets
libsharedlib_la_LDFLAGS = -version-info 1:0:0
$ cat debhello-2.0/src/Makefile.am
program executables to be produced
bin_PROGRAMS = hello

source files used for bin_PROGRAMS
hello_SOURCES = hello.c

C pre-processor flags used for bin_PROGRAMS
AM_CPPFLAGS = -I$(srcdir) -I$(top_srcdir)/1lib

Extra options for the linker for hello
hello_LDFLAGS =

118

CHAPTER 14. MORE EXAMPLES 14.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

Libraries the "hello” binary to be linked
hello_LDADD = $(top_srcdir)/1ib/libsharedlib. la

configure.ac (v=2.0):

$ cat debhello-2.0/configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello], [2.2], [foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])

echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])

AM_INIT_AUTOMAKE ([foreign])

Set default to --enable-shared --disable-static
LT_INIT([shared disable-static])

find the 1libltdl sources in the 1libltdl sub-directory
LT_CONFIG_LTDL_DIR([libltd1])

choose one
LTDL_INIT([recursive])
#LTDL_INIT([subproject])
#LTDL_INIT([nonrecursive])

Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
Checks for programs.

AC_PROG_CC

only for the recursive case
AC_CONFIG_FILES([Makefile
lib/Makefile
man/Makefile
src/Makefile])
AC_OUTPUT

Let’s use the debmake command to package this into multiple packages:
« debhello: type = bin

« libsharedlibl: type = lib

« libsharedlib-dev: type = dev

Here, we use the -b’libsharedlibl,libsharedlib-dev’ option to specify the additional binary packages
to be generated.

$ cd /path/to/debhello-2.0
$ debmake -b',libsharedlibi, libsharedlib-dev' -x1

I: set parameters

I: sanity check of parameters

I: pkg="debhello", ver="2.0", rev="1"

I: *** start packaging in "debhello-2.0". ***

I: provide debhello_2.0.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"

I: $ ln -sf debhello-2.0.tar.gz debhello_2.0.orig.tar.gz

I: pwd = "/path/to/debhello-2.0"

I: parse binary package settings: , libsharedlibl, libsharedlib-dev
I: binary package=debhello Type=bin / Arch=any M-A=foreign

I: binary package=libsharedlibl Type=1ib / Arch=any M-A=same

I: binary package=libsharedlib-dev Type=dev / Arch=any M-A=same

119

CHAPTER 14. MORE EXAMPLES 14.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

I: analyze the source tree
I: build_type = Autotools with autoreconf

The result is similar to “Section 14.8” but with more template files.
Let’s inspect the notable template files generated.
debian/rules (template file, v=2.0):

$ cd /path/to/debhello-2.0
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -W1,-01

%
dh $@ --with autoreconf

#override_dh_install:
dh_install --list-missing -X.la -X.pyc -X.pyo

Let's make this Debian package better as the maintainer.
debian/rules (maintainer version, v=2.0):

$ cd /path/to/debhello-2.0
$ vim debian/rules
hack, hack, hack,
$ cat debian/rules
#1/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -W1, --as-needed
% .
dh $@ --with autoreconf

override_dh_missing:
dh_missing -X.la

debian/control (maintainer version, v=2.0):

$ vim debian/control
hack, hack, hack,

$ cat debian/control

Source: debhello

Section: devel

Priority: optional

Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:

debhelper-compat (= 13),

dh-autoreconf,
Standards-Version: 4.6.2

Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello

Architecture: any

Multi-Arch: foreign

Depends:
libsharedlibl (= ${binary:Version}),
${misc:Depends},
${shlibs:Depends},

120

CHAPTER 14. MORE EXAMPLES 14.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

Description: Simple packaging example for debmake
This package contains the compiled binary executable.

This Debian binary package is an example package.
(This is an example only)

Package: libsharedlibl
Section: libs
Architecture: any
Multi-Arch: same
Pre-Depends:
${misc:Pre-Depends},
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the shared library.

Package: libsharedlib-dev

Section: libdevel

Architecture: any

Multi-Arch: same

Depends:
libsharedlibl (= ${binary:Version}),
${misc:Depends},

Description: Simple packaging example for debmake
This package contains the development files.

debian/*.install (maintainer version, v=2.0):

$ vim debian/copyright
hack, hack, hack,
$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Since this upstream source creates the proper auto-generated Makefile, there is no need to create
debianlinstall and debian/manpages files.

There are several other template files under the debian/ directory. These also need to be updated.

Template files under debian/. (v=2.0):

$ rm -f debian/clean debian/dirs debian/install debian/links

121

CHAPTER 14. MORE EXAMPLES 14.12. CMAKE (MULTI-BINARY PACKAGE)

$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian

debian/

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- debhello.dirs

+-- debhello.doc-base

+-- debhello.docs

+-- debhello.examples

+-- debhello.info

+-- debhello.install

+-- debhello. links

+-- debhello.manpages

+-- gbp.conf

+-- libsharedlib-dev.install
+-- libsharedlibi.install
+-- libsharedlibl.symbols
+-- rules*

+-- salsa-ci.yml

+-- source/

| +-- format

+-- tests/

| +-- control

+-- upstream/

| +-- metadata

+-- watch

4 directories, 22 files

The rest of the packaging activities are practically the same as the one in “Section 14.8".
Here are the generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=2.0):

$ dpkg -f debhello-dbgsym_2.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 2.0-1)

$ dpkg -f debhello_2.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: libsharedlibl (= 2.0-1), 1libc6 (>= 2.34)

$ dpkg -f libsharedlib-dev_2.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: libsharedlibl (= 2.0-1)

$ dpkg -f libsharedlibi1-dbgsym_2.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: libsharedlibl (= 2.0-1)

$ dpkg -f libsharedlib1_2.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: 1libc6 (>= 2.2.5)

14.12 CMake (multi-binary package)

This example demonstrates creating a set of Debian binary packages including the executable package,
the shared library package, the development file package, and the debug symbol package from a simple
C source program using CMake (CMakeLists.txt and files such as config.h.in) as its build system.
Let's assume this upstream tarball to be debhello-2.1.tar.gz.
This type of source is meant to be installed as a non-system file, for example, as:

$ tar -xzmf debhello-2.1.tar.gz
$ cd debhello-2.1

122

CHAPTER 14. MORE EXAMPLES 14.12. CMAKE (MULTI-BINARY PACKAGE)

$ mkdir obj-x86_64-1inux-gnu
$ cd obj-x86_64-1inux-gnu

$ cmake ..

$ make

$

make install

Let's get the source and make the Debian package.
Download debhello-2.1.tar.gz

$ wget http://www.example.org/download/debhello-2.1.tar.gz

$ tar -xzmf debhello-2.1.tar.gz
$ tree

+-- debhello-2.1
+-- CMakelLists.txt

+-- LICENSE
+-- README.md
+-- data

I

I

I

I

| | +-- hello.desktop
| | +-- hello.png

| +-- 1lib

| | +-- CMakelLists.txt
| | +-- sharedlib.c

| [+-- sharedlib.h
|

I

I

I

I

I

+

+-- man

| +-- CMakeLists.txt

[+-- hello.1

+-- src
+-- CMakelLists.txt
+-- config.h.in
+-- hello.c

-- debhello-2.1.tar.gz

6 directories, 14 files

Here, the contents of this source are as follows.
srcl/hello.c (v=2.1):

$ cat debhello-2.1/src/hello.c
#include "config.h"
#include <stdio.h>
#include <sharedlib.h>

int

main()

{
printf("Hello, I am " PACKAGE_AUTHOR "!\n");
sharedlib();
return 0;

}

srclconfig.h.in (v=2.1):

$ cat debhello-2.1/src/config.h.in
/* name of the package author */
#define PACKAGE_AUTHOR "@PACKAGE_AUTHOR@"

lib/sharedlib.c and lib/sharedlib.h (v=2.1):

$ cat debhello-2.1/1lib/sharedlib.h
int sharedlib();

$ cat debhello-2.1/1lib/sharedlib.c
#include <stdio.h>

int

sharedlib()

{

123

CHAPTER 14. MORE EXAMPLES 14.12.

CMAKE (MULTI-BINARY PACKAGE)

printf("This is a shared library!\n");
return 0;

CMakelLists.txt (v=2.1):

$ cat debhello-2.1/CMakelLists.txt
cmake_minimum_required(VERSION 2.8)
project(debhello)
set (PACKAGE_AUTHOR "Osamu Aoki")
add_subdirectory(lib)
add_subdirectory(src)
add_subdirectory(man)
$ cat debhello-2.1/man/CMakeLists.txt
install(
FILES ${CMAKE_CURRENT_SOURCE_DIR}/hello.1
DESTINATION share/man/manl
)
$ cat debhello-2.1/src/CMakelLists.txt
Always define HAVE_CONFIG_H
add_definitions(-DHAVE_CONFIG_H)
Generate config.h from config.h.in
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/config.h.in"
"${CMAKE_CURRENT_BINARY_DIR}/config.h"
)
include_directories("${CMAKE_CURRENT_BINARY_DIR}")
include_directories("${CMAKE_SOURCE_DIR}/1ib")

add_executable(hello hello.c)
target_link_libraries(hello sharedlib)
install(TARGETS hello

RUNTIME DESTINATION bin

)

Let's package this with the debmake command.

$ cd /path/to/debhello-2.1
$ debmake -b', libsharedlibi, libsharedlib-dev' -x1

I: set parameters

I: sanity check of parameters

I: pkg="debhello", ver="2.1", rev="1"

I: *** start packaging in "debhello-2.1". ***

I: provide debhello_2.1.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"

I: $ In -sf debhello-2.1.tar.gz debhello_2.1.0rig.tar.gz

I: pwd = "/path/to/debhello-2.1"

I: parse binary package settings: , libsharedlibl, libsharedlib-dev
I: binary package=debhello Type=bin / Arch=any M-A=foreign

I: binary package=libsharedlibl Type=1lib / Arch=any M-A=same

I: binary package=1libsharedlib-dev Type=dev / Arch=any M-A=same
I: analyze the source tree

I

: build_type = Cmake

The result is similar to “Section 14.8” but not exactly the same.

Let’s inspect the notable template files generated.
debian/rules (template file, v=2.1):

$ cd /path/to/debhello-2.1
$ cat debian/rules
#!/usr/bin/make -f

You must remove unused comment lines for the released package.

#export DH_VERBOSE = 1

124

CHAPTER 14. MORE EXAMPLES 14.12. CMAKE (MULTI-BINARY PACKAGE)

#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND -Wall -pedantic

#export DEB_LDFLAGS_MAINT_APPEND -W1, -01
%:
dh $@
#override_dh_auto_configure:
dh_auto_configure -- \
-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_TARGET_MULTIARCH)"

Let's make this Debian package better as the maintainer.
debian/rules (maintainer version, v=2.1):

$ cd /path/to/debhello-2.1
$ vim debian/rules
hack, hack, hack,

$ cat debian/rules
#!/usr/bin/make -f

export DH_VERBOSE = 1

export DEB_BUILD_MAINT_OPTIONS = hardening=+all

export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic

export DEB_LDFLAGS_MAINT_APPEND = -W1, --as-needed

DEB_HOST_MULTIARCH ?= $(shell dpkg-architecture -qDEB_HOST_MULTIARCH)

%
dh $@

override_dh_auto_configure:
dh_auto_configure -- \
-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_HOST_MULTIARCH)"

debian/control (maintainer version, v=2.1):

$ vim debian/control
hack, hack, hack,

$ cat debian/control
Source: debhello
Section: devel

Priority: optional

Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:

cmake,

debhelper-compat (= 13),
Standards-Version: 4.6.2

Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
libsharedlibl (= ${binary:Version}),
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the compiled binary executable.

This Debian binary package is an example package.
(This is an example only)

Package: libsharedlibl
Section: libs
Architecture: any
Multi-Arch: same

125

CHAPTER 14. MORE EXAMPLES 14.12. CMAKE (MULTI-BINARY PACKAGE)

Pre-Depends:

${misc:Pre-Depends},

Depends:

${misc:Depends},

${shlibs:Depends},

Description: Simple packaging example for debmake
This package contains the shared library.

Package: libsharedlib-dev

Section: libdevel

Architecture: any

Multi-Arch: same

Depends:
libsharedlibl (= ${binary:Version}),
${misc:Depends},

Description: Simple packaging example for debmake
This package contains the development files.

debian/*.install (maintainer version, v=2.1):

$ vim debian/copyright
hack, hack, hack,
$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The upstream CMakelLists.txt file needs to be patched to handle the multiarch path correctly.
debian/patches/* (maintainer version, v=2.1):

hack, hack, hack,
$ cat debian/libsharedlibl.symbols
libsharedlib.so.1 libsharedlibl #MINVER#
sharedlib@Base 2.1

Since this upstream source creates the proper auto-generated Makefile, there is no need to create
debianlinstall and debian/manpages files.

There are several other template files under the debian/ directory. These also need to be updated.

Template files under debian/. (v=2.1):

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ tree -F debian

126

CHAPTER 14. MORE EXAMPLES 14.13. INTERNATIONALIZATION

debian/

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- debhello.dirs

+-- debhello.doc-base

+-- debhello.docs

+-- debhello.examples

+-- debhello.info

+-- debhello.install

+-- debhello. links

+-- debhello.manpages

+-- gbp.conf

+-- libsharedlib-dev.install
+-- libsharedlibl.install
+-- libsharedlibl.symbols
+-- patches/

| +-- 000-cmake-multiarch.patch
| +-- series

+-- rules*

+-- salsa-ci.yml

+-- source/

| +-- format

+-- tests/

| +-- control

+-- upstream/

| +-- metadata

+-- watch

5 directories, 24 files

The rest of the packaging activities are practically the same as the one in “Section 14.8".
Here are the generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=2.1):

$ dpkg -f debhello-dbgsym_2.1-1 amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 2.1-1)

$ dpkg -f debhello_2.1-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: libsharedlibl (= 2.1-1), 1libc6 (>= 2.34)

$ dpkg -f libsharedlib-dev_2.1-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: libsharedlibl (= 2.1-1)

$ dpkg -f libsharedlibi1-dbgsym_2.1-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: libsharedlibl (= 2.1-1)

$ dpkg -f libsharedlib1_2.1-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: 1libc6 (>= 2.2.5)

14.13 Internationalization

Here is an example of updating the simple upstream C source debhello-2.0.tar.gz presented in “Sec-
tion 14.11” for internationalization (i18n) and creating the updated upstream C source debhello-2.0.tar.gz.

In the real situation, the package should already be internationalized. So this example is educational
for you to understand how this internationalization is implemented.

127

CHAPTER 14. MORE EXAMPLES

14.13. INTERNATIONALIZATION

Tip

The routine maintainer activity for the i18n is simply to add translation po files
ISy reported to you via the Bug Tracking System (BTS) to the pol directory and to

update the language list in the po/LINGUAS file.

Let’s get the source and make the Debian package.

Download debhello-2.0.tar.gz (i18n)

$ wget http://www.example.org/download/debhello-2.0.tar.gz

$ tar -xzmf debhello-2.0.tar.gz

$ tree

+-- debhello-2.0

| +-- LICENSE

| +-- Makefile.am

| +-- README.md

| +-- configure.ac

| +-- data

| | +-- hello.desktop
| [+-- hello.png

| +-- lib

| [+-- Makefile.am
| [+-- sharedlib.c
| [+-- sharedlib.h
| +-- man

| [+-- Makefile.am
| [+-- hello.1

| +-- src

| +-- Makefile.am
| +-- hello.c

+-- debhello-2.0.tar.gz

6 directories, 14 files

Internationalize this source tree with the gettextize command and remove files auto-generated by

Autotools.

run gettextize (i18n):

$ cd /path/to/debhello-2.0

$ gettextize

Creating po/ subdirectory

Creating build-aux/ subdirectory
Copying file ABOUT-NLS

Copying file build-aux/config.rpath
Not copying intl/ directory.

Copying
Copying
Copying
Copying
Copying
Copying
Copying
Copying
Copying

file
file
file
file
file
file
file
file
file

po/Makefile.in.in
po/Makevars.template
po/Rules-quot
po/boldquot.sed
po/en@boldquot . header
po/en@quot . header
po/insert-header.sin
po/quot.sed
po/remove-potcdate.sin

Creating initial po/POTFILES.in
Creating po/ChangelLog
Creating directory m4

Copying
Copying
Copying
Copying

file
file
file
file

m4/gettext.m4
m4/iconv.m4
m4/1ib-1d.m4
m4/1ib-1link.m4

CHAPTER 14. MORE EXAMPLES 14.13. INTERNATIONALIZATION

Copying file m4/1lib-prefix.m4

Copying file m4/nls.m4

Copying file m4/po.m4

Copying file m4/progtest.m4

Creating m4/ChangelLog

Updating Makefile.am (backup is in Makefile.am~)
Updating configure.ac (backup is in configure.ac~)
Creating ChangelLog

Please use AM_GNU_GETTEXT([external]) in order to cause autoconfiguration
to look for an external libintl.

Please create po/Makevars from the template in po/Makevars.template.
You can then remove po/Makevars.template.

Please fill po/POTFILES.in as described in the documentation.

Please run 'aclocal' to regenerate the aclocal.m4 file.
You need aclocal from GNU automake 1.9 (or newer) to do this.
Then run 'autoconf' to regenerate the configure file.

You will also need config.guess and config.sub, which you can get from the CV...
of the 'config' project at http://savannah.gnu.org/. The commands to fetch th...
are

$ wget 'http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/conf...
$ wget 'http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/conf...

You might also want to copy the convenience header file gettext.h

from the /usr/share/gettext directory into your package.

It is a wrapper around <libintl.h> that implements the configure --disable-nl...
option.

Press Return to acknowledge the previous 6 paragraphs.
$ rm -rf m4 build-aux *~

Let’s check generated files under the pol directory.
files in po (i18n):

$ 1s -1 po

total 60

-rw-rw-r-- 1 osamu osamu 494 Nov 29 07:59 ChangelLog
-rw-rw-r-- 1 osamu osamu 17577 Nov 29 07:59 Makefile.in.in
-rw-rw-r-- 1 osamu osamu 3376 Nov 29 07:59 Makevars.template
-rw-rw-r-- 1 osamu osamu 59 Nov 29 07:59 POTFILES.in
-rw-rw-r-- 1 osamu osamu 2203 Nov 29 07:59 Rules-quot
-rw-rw-r-- 1 osamu osamu 217 Nov 29 07:59 boldquot.sed
-rw-rw-r-- 1 osamu osamu 1337 Nov 29 07:59 en@boldquot.header
-rw-rw-r-- 1 osamu osamu 1203 Nov 29 07:59 en@quot.header
-rw-rw-r-- 1 osamu osamu 672 Nov 29 07:59 insert-header.sin
-rw-rw-r-- 1 osamu osamu 153 Nov 29 07:59 quot.sed
-rw-rw-r-- 1 osamu osamu 432 Nov 29 07:59 remove-potcdate.sin

Let's update the configure.ac by adding “AM_GNU_GETTEXT([external])”, etc..
configure.ac (i18n):

$ vim configure.ac
hack, hack, hack,

$ cat configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello], [2.2], [foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])

echo "Standard customization chores"

129

CHAPTER 14. MORE EXAMPLES 14.13. INTERNATIONALIZATION

AC_CONFIG_AUX_DIR([build-aux])
AM_INIT_AUTOMAKE([foreign])

Set default to --enable-shared --disable-static
LT_INIT([shared disable-static])

find the 1lib1ltdl sources in the 1libltdl sub-directory
LT_CONFIG_LTDL_DIR([libltd1])

choose one
LTDL_INIT([recursive])
#LTDL_INIT([subproject])
#LTDL_INIT([nonrecursive])

Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
Checks for programs.

AC_PROG_CC

desktop file support required
AM_GNU_GETTEXT_VERSION([0.19.3])
AM_GNU_GETTEXT([external])

only for the recursive case
AC_CONFIG_FILES([Makefile
po/Makefile.in
lib/Makefile
man/Makefile
src/Makefile])
AC_OUTPUT

Let’s create the po/Makevars file from the po/Makevars.template file.
pol/Makevars (i18n):

hack, hack, hack,
$ diff -u po/Makevars.template po/Makevars
--- po/Makevars.template 2024-11-29 07:59:15.133577084 +0000
+++ po/Makevars 2024-11-29 07:59:15.209578283 +0000
@@ -18,14 +18,14 @@
or entity, or to disclaim their copyright. The empty string stands for
the public domain; in this case the translators are expected to disclaim
their copyright.
-COPYRIGHT_HOLDER Free Software Foundation, Inc.
+COPYRIGHT_HOLDER = Osamu Aoki <osamu@debian.org>

This tells whether or not to prepend "GNU " prefix to the package

name that gets inserted into the header of the $(DOMAIN).pot file.
Possible values are "yes", "no", or empty. If it is empty, try to
detect it automatically by scanning the files in $(top_srcdir) for
"GNU packagename" string.

-PACKAGE_GNU =

+PACKAGE_GNU = no

H* B H H*

This is the email address or URL to which the translators shall report
bugs in the untranslated strings:
$ rm po/Makevars.template

Let's update C sources for the i18n version by wrapping strings with _(...).
srcl/hello.c (i18n):

hack, hack, hack,
$ cat src/hello.c
#include "config.h"
#include <stdio.h>

130

CHAPTER 14. MORE EXAMPLES 14.13. INTERNATIONALIZATION

#include <sharedlib.h>
#include <libintl.h>
#define _(string) gettext (string)

int

main()

{
printf(_("Hello, I am " PACKAGE_AUTHOR "!\n"));
sharedlib();
return 0O,

b

lib/sharedlib.c (i18n):

. hack, hack, hack,
$ cat lib/sharedlib.c
#include <stdio.h>
#include <libintl.h>
#define _(string) gettext (string)

int

sharedlib()

{
printf(_("This is a shared library!\n"));
return 0;

}

The new gettext (v=0.19) can handle the i18n version of the desktop file directly.
data/hello.desktop.in (i18n):

$ fgrep -v '[ja]=' data/hello.desktop > data/hello.desktop.in
$ rm data/hello.desktop

$ cat data/hello.desktop.in
[Desktop Entry]

Name=Hello

Comment=Greetings
Type=Application
Keywords=hello

Exec=hello

Terminal=true

Icon=hello.png
Categories=Utility;

Let’s list the input files to extract translatable strings in po/POTFILES.in.
po/POTFILES.in (i18n):

. hack, hack, hack,
$ cat po/POTFILES.in
src/hello.c
lib/sharedlib.c
data/hello.desktop.in

Here is the updated root Makefile.am with po added to the SUBDIRS environment variable.
Makefile.am (i18n):

$ cat Makefile.am
recursively process “Makefile.am™ in SUBDIRS
SUBDIRS = po lib src man

ACLOCAL_AMFLAGS = -I m4
EXTRA_DIST = build-aux/config.rpath m4/ChangelLog

Let's make a translation template file, debhello.pot.
poldebhello.pot (i18n):

$ xgettext -f po/POTFILES.in -d debhello -o po/debhello.pot -k_
wWarning: program compiled against libxml 212 using older 209

131

CHAPTER 14. MORE EXAMPLES 14.13. INTERNATIONALIZATION

$ cat po/debhello.pot
SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
#, fuzzy

mSgld nn

msgstr ""

"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"

"POT-Creation-Date: 2024-11-29 07:59+0000\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"

"Language: \n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"

#: src/hello.c:9

#, c-format

msgid "Hello, I am "
msgstr ""

#: lib/sharedlib.c:7

#, c-format

msgid "This is a shared library!\n"
msgstr ""

#: data/hello.desktop.in:3
msgid "Hello"
msgstr ""

#: data/hello.desktop.in:4
msgid "Greetings"
msgstr ""

#: data/hello.desktop.in:6
msgid "hello"
msgstr ""

Let’s add a translation for French.
pPo/LINGUAS and polfr.po (i18n):

$ echo 'fr' > po/LINGUAS

$ cp po/debhello.pot po/fr.po

$ vim po/fr.po

hack, hack, hack,

$ cat po/fr.po
SOME DESCRIPTIVE TITLE.
This file is put in the public domain.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#

mSgld nn
msgstr ""

"Project-Id-Version: debhello 2.2\n"
"Report-Msgid-Bugs-To: foo@example.org\n"
"POT-Creation-Date: 2015-03-01 20:22+0900\n"
"PO-Revision-Date: 2015-02-21 23:18+0900\n"
"Last-Translator: Osamu Aoki <osamu@debian.org>\n"
"Language-Team: French <LL@li.org>\n"
"Language: ja\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=UTF-8\n"

132

CHAPTER 14. MORE EXAMPLES 14.14. DETAILS

"Content-Transfer-Encoding: 8bit\n"

#: src/hello.c:34

#, c-format

msgid "Hello, my name is %s!\n"
msgstr "Bonjour, je m'appelle %s!\n"

#: lib/sharedlib.c:29

#, c-format

msgid "This is a shared library!\n"

msgstr "Ceci est une bibliothéque partagée!\n"

#: data/hello.desktop.in:3
msgid "Hello"
msgstr ""

#: data/hello.desktop.in:4
msgid "Greetings"
msgstr "Salutations"

#: data/hello.desktop.in:6
msgid "hello"
msgstr ""

#: data/hello.desktop.in:9
msgid "hello.png"
msgstr ""

The packaging activities are practically the same as the one in “Section 14.11".
You can find more i18n examples by following “Section 14.14".

14.14 Details

You can obtain detailed information about the examples presented and their variants as follows:
How to get details

$ apt-get source debmake-doc
$ cd debmake-doc*

$ cd examples

$ view examples/README.md

Follow the exact instruction in examples/README.md.

$ cd examples
$ make

Now, each directory named as examples/debhello-?.?_build-? contains the Debian packaging ex-
ample.

« emulated console command line activity log: the .log file

« emulated console command line activity log (short): the .slog file

¢ snapshot source tree image after the debmake command: the debmake directory
* snapshot source tree image after proper packaging: the package directory

« snapshot source tree image after the debuild command: the test directory
Notable examples include:
* POSIX shell script with Makefile and i18n support (v=3.0)

¢ C source with Makefile.in + configure and i18n support (v=3.2)
e C source with Autotools and i18n support (v=3.3)

¢ C source with CMake and i18n support (v=3.4)

133

Chapter 15

debmake(1) manpage

15.1 NAME

debmake - program to make a Debian source package

15.2 SYNOPSIS

debmake [-h] [-c | -K] [-n | -a package-version.orig.tar.gz | -d | -t | [-p package] [-u version] [-r revision]
[-z extension] [-b "binarypackage[:type], ...]" [-e foo@example.org] [-f "firstname lastname”] [-i "buildtool”
| -i] [-1 license_file] [-m] [-o file] [-q] [-s] [-V] [-w "addon, ..."] [-x [01234]] [-y] [-L] [-P] [-T]

15.3 DESCRIPTION

debmake helps to build a Debian package from the upstream source. Normally, this is done as follows:
* The upstream tarball is downloaded as the package-version.tar.gz file.
« Itis untarred to create many files under the package-version/ directory.

« debmake is invoked in the package-version/ directory, possibly without any arguments.

Files in the package-versionldebian/ directory are manually adjusted.

dpkg-buildpackage (usually from its wrapper debuild or sbuild) is invoked in the package-version/
directory to make Debian packages.

Make sure to protect the arguments of the -b, -f, -I, and -w options from shell interference by quoting
them properly.

15.3.1 optional arguments:

-h, --help show this help message and exit.
-c, --copyright scan source for copyright+license text and exit.

 -c: simple output style
» -cc: normal output style (similar to the debian/copyright file)
e -ccc: debug output style

-k, --kludge compare the debian/copyright file with the source and exit.

The debian/copyright file must be organized to list the generic file patterns before the specific
exceptions.

« -k: basic output style

134

CHAPTER 15. DEBMAKE(1) MANPAGE 15.3. DESCRIPTION

« -kk: verbose output style
-n, --native make a native Debian source package without .orig.tar.gz. This makes a Debian source
format “3.0 (native)” package.

If you are thinking of packaging a Debian-specific source tree with debianl/ in it into a native Debian
package, please think otherwise. You can use the “debmake -d -i debuild” or “debmake -t -i
debuild” commands to make a Debian non-native package using the Debian source format “3.0
(quilt)” The only difference is that the debian/changelog file must use the non-native version
scheme: version-revision. The non-native package is more friendly to downstream distributions.

-a package-version.tar.gz, --archive package-version.tar.gz use the upstream source tarball directly.
(-p, -u, -z: overridden)

The upstream tarball may be specified as package_version.orig.tar.gz and tar.gz. For other cases,
it may be tar.bz2, or tar.xz.

If the specified upstream tarball name contains uppercase letters, the Debian package name is
generated by converting them to lowercase letters.

If the specified argument is the URL (http://, https://, or ftp://) to the upstream tarball,
the upstream tarball is downloaded from the URL using wget or curl.
-d, --dist run the “make dist” command equivalents first to generate the upstream tarball and use it.

The “debmake -d” command is designed to run in the package/ directory hosting the upstream VCS
with the build system supporting the “make dist’ command equivalents. (automake/autoconf,

)
-t, --tar run the “tar” command to generate the upstream tarball and use it.

The “debmake -t” command is designed to run in the package/ directory hosting the upstream VCS.
Unless you provide the upstream version with the -u option or with the debian/changelog file, a
snapshot upstream version is generated in the 0\~%y%m%d%H%M format, e.g., 0~1403012359,
from the UTC date and time. The generated tarball excludes the debian/ directory found in the
upstream VCS. (It also excludes typical VCS directories: .gitl, .hgl, .svnl, .CVSI.)

-p package, --package package set the Debian package name.

-u version, --upstreamversion version set the upstream package version.

-r revision, --revision revision set the Debian package revision.

-z extension, --targz extension set the tarball type, extension=(tar.gz|tar.bz2|tar.xz). (alias: z, b, x)

-b "binarypackage[:type],...”, --binaryspec "binarypackage[:type],...” setthe binary package specs
by a comma separated list of binarypackage:type pairs. Here, binarypackage is the binary package
name, and the optional type is chosen from the following type values:

» bin: C/C++ compiled ELF binary code package (any, foreign) (default, alias: ””, i.e., null-
string)

 data: Data (fonts, graphics, ...) package (all, foreign) (alias: da)

» dev: Library development package (any, same) (alias: de)

» doc: Documentation package (all, foreign) (alias: do)

« lib: Library package (any, same) (alias: I)

* perl: Perl script package (all, foreign) (alias: pl)

» python3: Python (version 3) script package (all, foreign) (alias: py3, python, py)

» ruby: Ruby script package (all, foreign) (alias: rb)

» nodejs: Node.js based JavaScript package (all, foreign) (alias: js)

« script: Shell and other interpreted language script package (all, foreign) (alias: sh)

135

CHAPTER 15. DEBMAKE(1) MANPAGE 15.3. DESCRIPTION

The pair values in the parentheses, such as (any, foreign), are the Architecture and Multi-Arch
stanza values set in the debian/control file. In many cases, the debmake command makes good
guesses for type from binarypackage. If type is not obvious, type is set to bin.

Here are examples for typical binary package split scenarios where the upstream Debian source
package name is foo:
« Generating an executable binary package foo:
- “-b’foo:bin™, or its short form "-b’-"”, or no -b option
» Generating an executable (python3) binary package python3-foo:
- “-b’python3-foo:py’”, or its short form “-b’python3-foo’”
» Generating a data package foo:
- “-b’foo:data’, or its short form “-b’-:data’”
» Generating a executable binary package foo and a documentation one foo-doc:
- “-b’foo:bin,foo-doc:doc’”, or its short form “-b’-:-doc’”

» Generating a executable binary package foo, a library package libfool, and a library devel-
opment package libfoo-dev:

- “-b’foo:bin,libfool:lib,libfoo-dev:dev’ or its short form “-b’-,libfool,libfoo-dev’”
If the source tree contents do not match settings for type, the debmake command warns you.

-e foo@example.org, --email foo@example.org set e-mail address.
The default is taken from the value of the environment variable $SDEBEMAIL.

-f ”firstname lastname”, --fullname ”firstname lastname” set the fullname.
The default is taken from the value of the environment variable $SDEBFULLNAME.
-1 "buildtool”, --invoke "buildtool” invoke "buildtool” at the end of execution. buildtool may be “dpkg-
buildpackage”, “debuild”, “sbuild”, etc.
The default is not to execute any program.
Setting this option automatically sets the --local option.
-j, --judge run dpkg-depcheck to judge build dependencies and identify file paths. Log files are in the
parent directory.
» package.build-dep.log: Log file for dpkg-depcheck.
» package.install.log: Log file recording files in the debian/tmp directory.
-1 "license _file,...”, --license "license_file,...” add formatted license text to the end of the debian/copyright
file holding license scan results.
The default is to add COPYING and LICENSE, and license_file needs to list only the additional file
names all separated by “,".
-m, --monoarch force packages to be non-multiarch.

-o file, --option file read optional parameters from file. (This is not for everyday use.)

The content of file is sourced as the Python code at the end of para.py. For example, the package
description can be specified by the following file.

para['desc'] = 'program short description'
para['desc_long'] = "'"'\
program long description which you wish to include.

Empty line is space + .
You keep going on ...

-q, --quitearly quit early before creating files in the debian/ directory.

136

CHAPTER 15. DEBMAKE(1) MANPAGE 15.4. EXAMPLES

-s, --spec use upstream spec (pyproject.py for Python, etc.) for the package description.
-v, --version show version information.

-w "addon,...”, --with ”addon,...” add extra arguments to the --with option of the dh(1) command as
addon in debian/rules.

The addon values are listed all separated by

For Autotools based packages, autoreconf as addon to run “autoreconf -i -v -f” for every package
building is default behavior of the dh(1) command.

For Autotools based packages, if they install Python (version 3) programs, setting python3 as
addon to the debmake command argument is needed since this is non-obvious. But for pypro-
ject.toml based Python packages, setting python3 as addon to the debmake command argument
is not needed since this is obvious and the debmake command automatically set it to the dh(1)
command.

', e.g., “-w "python3,autoreconf””.

-X n, --extra n generate configuration files as templates. (Please note debian/changelog, debian/control,

debian/copyright, and debian/rules are bare minimum configuration files to build a Debian binary
package.)

The number n determines which configuration templates are generated.

» -x0: all required configuration template files. (selected option if any of these files already exist)
« -x1: all -x0 files + desirable configuration template files with binary package type supports.

« -x2: all -x1 files + normal configuration template files with maintainer script supports.

» -x3: all -x2 files + optional configuration template files. (default option)

» -x4: all -x3 files + deprecated configuration template files.

Some configuration template files are generated with the extra .ex suffix to ease their removal. To
activate these, rename their file names to the ones without the .ex suffix and edit their contents. Ex-
isting configuration files are never overwritten. If you wish to update some of the existing configuration
files, please rename them before running the debmake command and manually merge the generated
configuration files with the old renamed ones.

-y, --yes “force yes” for all prompts. (without option: “ask [Y/n]"; doubled option: “force no”)
-L, --local generate configuration files for the local package to fool lintian(1) checks.
-P, --pedantic pedantically check auto-generated files.

-T, --tutorial output tutorial comment lines in template files. default when -x3 or -x4 is set.

15.4 EXAMPLES

For a well behaving source, you can build a good-for-local-use installable single Debian binary package

easily with one command. Test install of such a package generated in this way offers a good alternative to

the traditional “make install’ command installing into the /usr/local directory since the Debian package

can be removed cleanly by the “dpkg -P '..."”” command. Here are some examples of how to build such

test packages. (These should work in most cases. If the -d option does not work, try the -t option instead.)
For a typical C program source tree packaged with autoconf/automake:

» debmake -d -i debuild

For a typical Python (version 3) module source tree:

« debmake -s -d -b”:python3” -i debuild

For a typical Python (version 3) module in the package-version.tar.gz archive:
« debmake -s -a package-version.tar.gz -b”:python3” -i debuild

For a typical Perl module in the package-version.tar.gz archive:

« debmake -a package-version.tar.gz -b”:perl” -i debuild

137

CHAPTER 15. DEBMAKE(1) MANPAGE 15.5. HELPER PACKAGES

15.5 HELPER PACKAGES

Packaging may require installation of some additional specialty helper packages.

Python (version 3) programs may require the pybuild-plugin-pyproject package.

The Autotools (autoconf + automake) build system may require autotools-dev or dh-autoreconf
package.

Ruby programs may require the gem2deb package.

Node.js based JavaScript programs may require the pkg-js-tools package.
Java programs may require the javahelper package.

Gnome programs may require the gobject-introspection package.

etc.

15.6 CAVEAT

Although debmake is meant to provide template files for the package maintainer to work on, actual
packaging activities are often performed without using debmake while referencing only existing similar
packages and “Debian Policy Manual”. All template files generated by debmake are required to be
modified manually.

There are 2 positive points for debmake:

L]

debmake helps to write terse packaging tutorial “Guide for Debian Maintainers” (debmake-doc
package).

debmake provides short extracted license texts as debian/copyright in decent accuracy to help
license review.

Please double check copyright with the licensecheck(1) command.

There are some limitations for what characters may be used as a part of the Debian package. The
most notable limitation is the prohibition of uppercase letters in the package name. Here is a summary
as a set of regular expressions:

L]

Upstream package name (-p): [-+.a-z0-9]{2, }
Binary package name (-b): [-+.a-z0-9]{2, }
Upstream version (-u): [0-9][-+.:~a-z0-9A-Z]*

Debian revision (-r): [0-9][+.~a-z0-9A-Z]*

See the exact definition in “Chapter 5 - Control files and their fields” in the “Debian Policy Manual”.
debmake assumes relatively simple packaging cases. So all programs related to the interpreter are
assumed to be “Architecture: all”. This is not always true.

15.7 DEBUG

Please report bugs to the debmake package using the reportbug command.
The character set in the environment variable SDEBUG determines the logging output level.

L]

L]

i: main.py logging

p: para.py logging

s: checkdep5.py check_format_style() logging
y: checkdep5.py split_years_name() logging

b: checkdep5.py parse_lines() 1 logging — content_state scan loop: begin-loop

138

https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/manuals/debmake-doc/
https://www.debian.org/doc/debian-policy/#document-ch-controlfields

CHAPTER 15. DEBMAKE(1) MANPAGE 15.8. AUTHOR

« m: checkdep5.py parse_lines() 2 logging — content_state scan loop: after regex match
« e: checkdep5.py parse_lines() 3 logging — content_state scan loop: end-loop

e a: checkdep5.py parse_lines() 4 logging — print author/translator section text

e f. checkdep5.py check_all_license() 1 logging— input filename for the copyright scan
e I: checkdep5.py check_all_license() 2 logging— print license section text

e c: checkdep5.py check_all_license() 3 logging — print copyright section text

* k: checkdep5.py check_all_license() 4 logging— sort key for debian/copyright stanza
e r: sed.py logging

e w: cat.py logging

* n: kludge. py logging (“debmake -k”)

Use this feature as:

$ DEBUG=ipsybmeaflckrwn debmake ...

See README.developer in the source for more.

15.8 AUTHOR

Copyright © 2014-2024 Osamu Aoki <osamu@debian.org>

15.9 LICENSE

Expat License

15.10 SEE ALSO

The debmake-doc package provides the “Guide for Debian Maintainers” in plain text, HTML and PDF
formats under the lusrishare/doc/debmake-doc/ directory.

See also dpkg-source(1), deb-control(5), debhelper(7), dh(1), dpkg-buildpackage(1), debuild(1),
quilt(1), dpkg-depcheck(1), sbuild(1), gbp-buildpackage(1), and gbp-pq(1) manpages.

139

mailto:osamu@debian.org
https://www.debian.org/doc/manuals/debmake-doc/

Chapter 16

debmake options

Here are some additional explanations for debmake options.

16.1 Shortcut options (-a, -i)

The debmake command offers 2 shortcut options.
e -a: open the upstream tarball
* -i : execute script to build the binary package

The example in the above “Chapter 5” can be done simply as follows.

$ debmake -a package-1.0.tar.gz -i debuild

Tip

A URL such as “https:/lwww.example.org/DLIpackage-1.0.tar.gz” may be used
for the -a option.

Tip

A URL such as “https:/larm.koji.fedoraproject.org/packageslibus/1.5.7/-
3.fc21/srclibus-1.5.7-3.fc21.src.rpm” may be used for the -a option, too.

16.2 debmake -b

The debmake command with the -b option provides an intuitive and flexible method to create the initial
template debian/control file. This file defines the split of the Debian binary packages with the following
stanzas:

« Package:
¢ Architecture: (e.g. amd64)
¢ Multi-Arch: (see “Section 10.10")

* Depends:

140

https://www.example.org/DL/package-1.0.tar.gz
https://arm.koji.fedoraproject.org/packages/ibus/1.5.7/3.fc21/src/ibus-1.5.7-3.fc21.src.rpm
https://arm.koji.fedoraproject.org/packages/ibus/1.5.7/3.fc21/src/ibus-1.5.7-3.fc21.src.rpm

CHAPTER 16. DEBMAKE OPTIONS 16.3. DEBMAKE -CC

¢ Pre-Depends:

The debmake command also sets an appropriate set of substvars (substitution variables) used in
each pertinent dependency stanza.
Let's quote the pertinent part from the debmake manpage here.

-b ”binarypackage[:type],...”, --binaryspec "binarypackage[:type],...” setthe binary package specs
by a comma separated list of binarypackage:type pairs. Here, binarypackage is the binary package
name, and the optional type is chosen from the following type values:

* bin: C/C++ compiled ELF binary code package (any, foreign) (default, alias: ””, i.e., null-
string)
 data: Data (fonts, graphics, ...) package (all, foreign) (alias: da)
« dev: Library development package (any, same) (alias: de)
» doc: Documentation package (all, foreign) (alias: do)
« lib: Library package (any, same) (alias: I)
« perl: Perl script package (all, foreign) (alias: pl)
* python3: Python (version 3) script package (all, foreign) (alias: py3, python, py)
» ruby: Ruby script package (all, foreign) (alias: rb)
» nodejs: Node.js based JavaScript package (all, foreign) (alias: js)
« script: Shell and other interpreted language script package (all, foreign) (alias: sh)
The pair values in the parentheses, such as (any, foreign), are the Architecture and Multi-Arch

stanza values set in the debian/control file. In many cases, the debmake command makes good
guesses for type from binarypackage. If type is not obvious, type is set to bin.

Here are examples for typical binary package split scenarios where the upstream Debian source
package name is foo:
» Generating an executable binary package foo:
- “-b'foo:bin™, or its short form -b’-"™, or no -b option
» Generating an executable (python3) binary package python3-foo:
- “-b’python3-foo:py’’, or its short form “-b’python3-foo’
» Generating a data package foo:
- “-b’foo:data’, or its short form “-b’-:data’
» Generating a executable binary package foo and a documentation one foo-doc:
- “-b’foo:bin,foo-doc:doc’”, or its short form “-b’-:-doc’”

» Generating a executable binary package foo, a library package libfool, and a library devel-
opment package libfoo-dev:

— “-b’foo:bin,libfool:lib,libfoo-dev:dev’ or its short form “-b’-,libfool,libfoo-dev’”

If the source tree contents do not match settings for type, the debmake command warns you.

16.3 debmake -cc

The debmake command with the -cc option can make a summary of the copyright and license for the
entire source tree to standard output.

$ tar -xvzf package-1.0.tar.gz
$ cd package-1.0
$ debmake -cc | less

With the -c option, this provides shorter report.

141

CHAPTER 16. DEBMAKE OPTIONS 16.4. SNAPSHOT UPSTREAM TARBALL (-D, -T)

16.4 Snapshot upstream tarball (-d, -t)

This test building scheme is suitable for git repositories organized as described in gbp-buildpackage(7),
which uses the master, upstream, and pristine-tar branches.

The upstream snapshot from the upstream source tree in the upstream VCS can be made with the
-d option if the upstream supports the “make dist” equivalence.

$ cd /path/to/upstream-vcs
$ debmake -d -i debuild

Alternatively, the same can be made with the -t option if the upstream tarball can be made with the
tar command.

$ cd /path/to/upstream-vcs
$ debmake -p package -t -i debuild

Unless you provide the upstream version with the -u option or with the debian/changelog file, a
snapshot upstream version is generated in the 0~%y%m%d%H%M format, e.g., 0~1403012359, from
the UTC date and time.

If the upstream VCS is hosted in the packagel directory instead of the upstream-vcsl directory, the
“-p package” can be skipped.

If the upstream source tree in the VCS contains the debian/* files, the debmake command with either
the -d option or the -t option combined with the -i option automates the making of a non-native Debian
package from the VCS snapshot while using these debian/* files.

$ cp -r /path/to/package-0~1403012359/debian/. /path/to/upstream-vcs/debian
$ dch
. update debian/changelog
$ git add -A .; git commit -m "vcs with debian/*"
$ debmake -t -p package -i debuild

This non-native Debian binary package building scheme without the real upstream tarball is consid-
ered a quasi-native Debian package. See “Section 11.13” for more detalils.

16.5 debmake -j

This is an experimental feature.

The generation of a functioning multi-binary package always requires more manual work than that of
a functioning single binary package. The test build of the source package is the essential part of it.

For example, let's package the same package-1.0.tar.gz (see “Chapter 5”) into a multi binary pack-
age.

« Invoke the debmake command with the -j option for the test building and the report generation.

$ debmake -j -a package-1.0.tar.gz

« Check the last lines of the package.build-dep.log file to judge build dependencies for Build-
Depends. (You do not need to list packages used by debhelper, perl, or fakeroot explicitly in
Build-Depends. This technique is useful for the generation of a single binary package, t00.)

¢ Check the contents of the package.install.log file to identify the install paths for files to decide how
you split them into multiple packages.

 Start packaging with the debmake command.

$ rm -rf package-1.0

$ tar -xvzf package-1.0.tar.gz

$ cd package-1.0

$ debmake -b"packagel:typel, ..."

¢ Update debian/control and debian/binarypackage.install files using the above information.

« Update other debian/* files as needed.

142

CHAPTER 16. DEBMAKE OPTIONS 16.6. DEBMAKE -K

 Build the Debian package with the debuild command or its equivalent.
$ debuild

* All binary package entries specified in the debianlbinarypackage.install file are generated as
binarypackage_version-revision_arch.deb.

Note

The -j option for the debmake command invokes dpkg-depcheck(1) to run de-
bian/rules under strace(1) to obtain library dependencies. Unfortunately, this
is very slow. If you know the library package dependencies from other sources
such as the SPEC file in the source, you may just run the "debmake ...” com-

mand without the -j option and run the “debian/rules install’ command to check
the install paths of the generated files.

16.6 debmake -k

This is an experimental feature.

When updating a package for the new upstream release, the debmake command can verify the
content of the existing debian/copyright file against the copyright and license situation of the entire
updated source tree.

$ cd package-vcs
$ gbp import-orig --uscan --pristine-tar

. update source with the new upstream release
$ debmake -k | less

The “debmake -k” command parses the debian/copyright file from the top to the bottom and com-
pares the license of all the non-binary files in the current package with the license described in the last
matching file pattern entry of the debian/copyright file.

When editing the auto-generated debian/copyright file, please make sure to keep the generic file
patterns at the top of the list.

Tip

For all new upstream releases, run the “debmake -k” command to ensure that
the debian/copyright file is current.

16.7 debmake -P

The debmake command invoked with the -P option pedantically checks auto-generated files for copy-
right+license text even if they are with permissive license.

This option affects not only the content of the debian/copyright file generated by normal execution,
but also the output by the execution with the -k, -c, -cc, and -ccc options.

16.8 debmake -T

The debmake command invoked with the -T option additionally prints verbose tutorial comment lines.
The lines marked with ### in the template files are part of the verbose tutorial comment lines.

143

CHAPTER 16. DEBMAKE OPTIONS 16.9. DEBMAKE -X

16.9 debmake -x

The amount of template files generated by the debmake command depends on the -x[01234] option.

¢ See “Section 14.1” for cherry-picking of the template files.

Note

None of the existing configuration files are modified by the debmake command.

144

	Preface
	Overview
	Prerequisites
	People around Debian
	How to contribute
	Social dynamics of Debian
	Technical reminders
	Debian documentation
	Help resources
	Archive situation
	Contribution approaches
	Novice contributor and maintainer

	Tool Setups
	Email setup
	mc setup
	git setup
	quilt setup
	devscripts setup
	sbuild setup
	Persistent chroot setup
	gbp setup
	HTTP proxy
	Private Debian repository
	Virtual machines
	Local network with virtual machines

	Simple packaging
	Packaging tarball
	Big picture
	What is debmake?
	What is debuild?
	Step 1: Get the upstream source
	Step 2: Generate template files with debmake
	Step 3: Modification to the template files
	Step 4: Building package with debuild
	Step 3 (alternatives): Modification to the upstream source
	Patch by “diff -u” approach
	Patch by dquilt approach
	Patch by “dpkg-source --auto-commit” approach

	Basics for packaging
	Packaging workflow
	debhelper package
	Package name and version
	Native Debian package
	debian/rules file
	debian/control file
	debian/changelog file
	debian/copyright file
	debian/patches/* files
	debian/source/include-binaries file
	debian/watch file
	debian/upstream/signing-key.asc file
	debian/salsa-ci.yml file
	Other debian/* files

	Quality of packaging
	Reformat debian/* files with wrap-and-sort
	Validate debian/* files with debputy

	Sanitization of the source
	Fix with Files-Excluded
	Fix with “debian/rules clean”
	Fix with extend-diff-ignore
	Fix with tar-ignore
	Fix with “git clean -dfx”

	More on packaging
	Package customization
	Customized debian/rules
	Variables for debian/rules
	New upstream release
	Manage patch queue with dquilt
	Build commands
	Note on sbuild
	Special build cases
	Upload orig.tar.gz
	Skipped uploads
	Bug reports

	Advanced packaging
	Historical perspective
	Current trends
	Note on build system
	Continuous integration
	Bootstrapping
	Compiler hardening
	Reproducible build
	Substvar
	Library package
	Multiarch
	Split of a Debian binary package
	Package split scenario and examples
	Multiarch library path
	Multiarch header file path
	Multiarch *.pc file path
	Library symbols
	Library package name
	Library transition
	binNMU safe
	Debugging information
	-dbgsym package
	debconf

	Packaging with git
	Salsa repository
	Salsa account setup
	Salsa CI service
	Branch names
	Patch unapplied Git repository
	Patch applied Git repository
	Note on gbp
	Note on dgit
	Patch by “gbp-pq” approach
	Manage patch queue with gbp-pq
	gbp import-dscs --debsnap
	Note on dgit-maint-debrebase workflow
	Quasi-native Debian packaging

	Tips
	Build under UTF-8
	UTF-8 conversion
	Hints for Debugging

	Tool usages
	debdiff
	dget
	mk-origtargz
	origtargz
	git deborig
	dpkg-source -b
	dpkg-source -x
	debc
	piuparts
	bts

	More Examples
	Cherry-pick templates
	No Makefile (shell, CLI)
	Makefile (shell, CLI)
	pyproject.toml (Python3, CLI)
	Makefile (shell, GUI)
	pyproject.toml (Python3, GUI)
	Makefile (single-binary package)
	Makefile.in + configure (single-binary package)
	Autotools (single-binary package)
	CMake (single-binary package)
	Autotools (multi-binary package)
	CMake (multi-binary package)
	Internationalization
	Details

	debmake(1) manpage
	NAME
	SYNOPSIS
	DESCRIPTION
	optional arguments:

	EXAMPLES
	HELPER PACKAGES
	CAVEAT
	DEBUG
	AUTHOR
	LICENSE
	SEE ALSO

	debmake options
	Shortcut options (-a, -i)
	debmake -b
	debmake -cc
	Snapshot upstream tarball (-d, -t)
	debmake -j
	debmake -k
	debmake -P
	debmake -T
	debmake -x

