

Debian 维护者指南

青木修、杨博远、Fonzie Huang 和 xiao sheng
wen(肖盛文)

January 9, 2026

Debian 维护者指南
by 青木修、杨博远、Fonzie Huang 和 xiao sheng wen(肖盛文)

版权 © 2014-2024 青木修

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ”Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABIL-
ITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

本指南在撰写过程中参考了以下几篇文档：

• “Making a Debian Package (AKA the Debmake Manual)”, 版权所有 © 1997 Jaldhar Vyas.

• “The New-Maintainer’s Debian Packaging Howto”, 版权所有 © 1997 Will Lowe.

• “Debian New Maintainers’Guide”, 版权所有 © 1998-2002 Josip Rodin, 2005-2017 Osamu Aoki,
2010 Craig Small 以及 2010 Raphaël Hertzog。

本指南的最新版本应当可以在下列位置找到：

• 在 debmake-doc 软件包 中，以及

• 位于 Debian 文档网站。

i

https://tracker.debian.org/pkg/debmake-doc
https://www.debian.org/doc/devel-manuals

Contents

1 前言 1

2 概览 3

3 预备知识 5
3.1 Debian 社区的工作者 . 5
3.2 如何做出贡献 . 5
3.3 Debian 的社会驱动力 . 6
3.4 技术提醒 . 6
3.5 Debian 文档 . 7
3.6 帮助资源 . 8
3.7 仓库状况 . 8
3.8 贡献流程 . 9
3.9 新手贡献者和维护者 . 10

4 工具的配置 12
4.1 Email setup . 12
4.2 mc 设置 . 13
4.3 git 设置 . 13
4.4 quilt 设置 . 13
4.5 devscripts 设置 . 14
4.6 sbuild 设置 . 14
4.7 Persistent chroot setup . 16
4.8 gbp 设置 . 16
4.9 HTTP 代理 . 17
4.10 私有 Debian 仓库 . 17
4.11 虚拟机 . 17
4.12 本地网络中的虚拟机 . 17

5 简单打包 18
5.1 Packaging tarball . 18
5.2 大致流程 . 18
5.3 什么是 debmake？ . 19
5.4 什么是 debuild？ . 20
5.5 第一步：获取上游源代码 . 20
5.6 Step 2: Generate template files with debmake . 21
5.7 第三步：编辑模板文件 . 25
5.8 Step 4: Building package with debuild . 27
5.9 Step 3 (alternatives): Modification to the upstream source 30
5.10 Patch by “diff -u”approach . 31
5.11 Patch by dquilt approach . 31
5.12 Patch by “dpkg-source --auto-commit”approach . 33

6 打包工作的基础 36
6.1 打包工作流 . 36
6.2 debhelper package . 38
6.3 软件包名称和版本 . 39
6.4 原生 Debian 软件包 . 40
6.5 debian/rules 文件 . 40
6.6 debian/control 文件 . 41
6.7 debian/changelog file . 42
6.8 debian/copyright 文件 . 42
6.9 debian/patches/* 文件 . 43
6.10 debian/source/include-binaries 文件 . 44

ii

CONTENTS

6.11 debian/watch 文件 . 44
6.12 debian/upstream/signing-key.asc file . 44
6.13 debian/salsa-ci.yml 文件 . 45
6.14 其它 debian/* 文件 . 45

7 Quality of packaging 50
7.1 Reformat debian/* files with wrap-and-sort . 50
7.2 Validate debian/* files with debputy . 50

8 Sanitization of the source 51
8.1 Fix with Files-Excluded . 51
8.2 Fix with “debian/rules clean” . 51
8.3 Fix with extend-diff-ignore . 52
8.4 Fix with tar-ignore . 52
8.5 Fix with “git clean -dfx” . 53

9 More on packaging 54
9.1 软件包自定义 . 54
9.2 Customized debian/rules . 54
9.3 Variables for debian/rules . 55
9.4 新上游版本 . 55
9.5 Manage patch queue with dquilt . 56
9.6 构建命令 . 56
9.7 Note on sbuild . 56
9.8 Special build cases . 57
9.9 上传 orig.tar.gz . 57
9.10 跳过的上传 . 58
9.11 错误报告 . 58

10 高级打包 60
10.1 Historical perspective . 60
10.2 当前的趋势 . 60
10.3 Note on build system . 61
10.4 持续集成 . 61
10.5 自举 . 61
10.6 编译加固 . 62
10.7 可重现的构建 . 62
10.8 Substvar . 62
10.9 库软件包 . 63
10.10多体系结构 . 63
10.11Debian 二进制软件包的拆分 . 64
10.12拆包的场景和例子 . 64
10.13Multiarch library path . 65
10.14Multiarch header file path . 65
10.15Multiarch *.pc file path . 66
10.16库符号 . 66
10.17Library package name . 67
10.18库变迁 . 68
10.19binNMU 安全 . 68
10.20调试信息 . 68
10.21-dbgsym package . 69
10.22debconf . 69

11 Packaging with git 70
11.1 Salsa 存储库 . 71
11.2 Salsa 账户设置 . 71
11.3 Salsa 持续集成服务 . 71
11.4 分支名称 . 71
11.5 Patch unapplied Git repository . 72

iii

CONTENTS

11.6 Patch applied Git repository . 73
11.7 Note on gbp . 73
11.8 Note on dgit . 74
11.9 Patch by “gbp-pq”approach . 74
11.10Manage patch queue with gbp-pq . 75
11.11gbp import-dscs --debsnap . 75
11.12Note on dgit-maint-debrebase workflow . 76
11.13Quasi-native Debian packaging . 76

12 提示 77
12.1 在 UTF-8 环境下构建 . 77
12.2 UTF-8 转换 . 77
12.3 Hints for Debugging . 77

13 工具的使用 80
13.1 debdiff . 80
13.2 dget . 80
13.3 mk-origtargz . 81
13.4 origtargz . 81
13.5 git deborig . 81
13.6 dpkg-source -b . 81
13.7 dpkg-source -x . 81
13.8 debc . 81
13.9 piuparts . 81
13.10bts . 82

14 更多示例 83
14.1 挑选最好的模板 . 83
14.2 无 Makefile（shell，命令行界面） . 85
14.3 Makefile（shell，命令行界面） . 91
14.4 pyproject.toml (Python3, CLI) . 93
14.5 Makefile（shell，图形界面） . 98
14.6 pyproject.toml（Python3, 图形界面） . 100
14.7 Makefile（单个二进制软件包） . 104
14.8 Makefile.in + configure（单个二进制软件包） . 106
14.9 Autotools（单个二进制文件） . 109
14.10CMake（单个二进制软件包） . 112
14.11Autotools（多个二进制软件包） . 116
14.12CMake（多个二进制软件包） . 121
14.13国际化 . 126
14.14细节 . 132

15 debmake(1) 手册页 133
15.1 名称 . 133
15.2 概述 . 133
15.3 描述 . 133

15.3.1 可选参数： . 133
15.4 示例 . 136
15.5 帮助软件包 . 137
15.6 注意事项 . 137
15.7 除错 . 137
15.8 作者 . 138
15.9 许可证 . 138
15.10参见 . 138

iv

CONTENTS

16 debmake options 139
16.1 Shortcut options (-a, -i) . 139
16.2 debmake -b . 139
16.3 debmake -cc . 140
16.4 Snapshot upstream tarball (-d, -t) . 141
16.5 debmake -j . 141
16.6 debmake -k . 142
16.7 debmake -P . 142
16.8 debmake -T . 142
16.9 debmake -x . 143

v

Abstract
本篇《Debian 维护者指南》（2026-01-09）教程文档面向普通 Debian 用户和未来的开发者，描述了

使用 debmake 命令构建 Debian 软件包的方法。
本指南注重描述现代的打包风格，同时提供了许多简单的示例。

• POSIX shell 脚本打包

• Python3 脚本打包

• C 和 Makefile/Autotools/CMake

• 含有共享库的多个二进制软件包的打包，等等。

本篇《Debian 维护者指南》可看作《Debian 新维护者手册》的继承文档。

Chapter 1

前言

如果您在某些方面算得上是有经验的 Debian 用户 1 的话，您可能遇上过这样的情况：

• 您想要安装某一个软件包，但是该软件在 Debian 仓库中尚不存在。

• 您想要将一个 Debian 软件包更新为上游的新版本。

• 您想要添加某些补丁来修复某个 Debian 软件包中的缺陷。

如果您想要创建一个 Debian 软件包来满足这些需求，并将您的工作与社区分享，那么您便是本篇指
南的目标读者，即未来的 Debian 维护者。2 欢迎来到 Debian 社区。

Debian 是一个大型的、历史悠久的志愿者组织。因此，它具有许多需要遵守的社交上和技术上的规
则和惯例。Debian 也开发出了一长串的打包工具和仓库维护工具，用来构建一套能够解决各种技术目标
的二进制软件包：

• 软件包具有清晰明了的依赖关系和补丁，并可以在干净的构建环境下从头开始正确构建（“第 6.6
节”、“第 6.9 节”、“第 4.6 节”）

• 软件包可以跨多个架构得到构建（“第 9.3 节”）

• 构建是可重现的（“第 10.7 节”）

• 具有多架构（multiarch）支持（“第 10.10 节”）

• 可以在新硬件架构下自举（“第 10.5 节”）

• 构建能够使用特定的编译选项增强安全性（“第 10.6 节”）

• 软件按照最佳实践拆分为多个二进制软件包（“第 10.11 节”）

• 程序库的名称和内容得到有效管理，并确保升级时的平滑迁移（“第 10.18 节”）

• 如有必要，能够正确使用交互式命令行进行安装（“第 10.22 节”）

• 利用持续集成保证质量（“第 10.4 节”）

• ……

这些目标对很多新近参与工作的潜在 Debian 维护者来说可能无法立刻全部掌握。本篇指南旨在提供
一个着手点，方便读者开展工作。它具体描述了以下内容：

• 作为 Debian 未来的维护者，您在参与 Debian 工作之前应该了解的东西。

• 制作一个简单的 Debian 软件包大概流程如何。

• 制作 Debian 软件包时有哪些规则。

• 省心省力制作 Debian 软件包的小窍门。

1您需要对 Unix 编程有所了解，但不必一定是这方面的专家。在“Debian 参考手册”中，您可以了解到使用 Debian 系统的一些
基本操作和关于 Unix 编程的一些指引。

2如果您对分享 Debian 软件包不感兴趣，您可以对上游包含修复内容的源码包进行编译并安装至 /usr/local 来满足本地的需
求。

1

https://www.debian.org/doc/user-manuals#quick-reference

CHAPTER 1. 前言

• 在某些典型场景下制作 Debian 软件包的示例。

作者在更新原有的使用 dh-make 软件包的“新维护者手册”时认识到了该文档的局限性。因此，作
者决定创建一个替代工具并编写其对应的文档以解决多架构支持（multi-arch）等现代的需求。其成果
便是 debmake 软件包（最初版本为 2013 年发布的 4.0 版，当前版本：4.5.1），以及这篇更新的、由
debmake-doc 软件包（当前版本：1.23-2）提供的“Debian 维护者指南”。（在 2016 年，dh-make 从 Perl
迁移到了 Python 语言并提供了更新的特性。）

许多杂项事务和小提示都被集成进了 debmake 命令，以使本指南内容简单易懂。本指南同时提供了
许多打包示例来帮助用户上手使用。

小心

合适地创建并维护 Debian 软件包需要占用许多时间。Debian 维护者在接受这项
挑战时一定要确保 既能精通技术又能勤勉投入精力。

某些重要的主题会详细进行说明。其中某些可能看起来和您没什么关系。请保持耐心。某些边缘情况
会被跳过，一些主题仅以外部引用提及。这些都是有意的行文安排，目标是让这份指南保持简单而可维
护。

2

https://www.debian.org/doc/manuals/debmake-doc/

Chapter 2

概览

对 package-1.0.tar.gz，一个包含了简单的、符合“GNU 编码标准”和“FHS（文件系统层级规范）”的 C 语
言源代码的程序来说，它在 Debian 下打包工作可以按照下列流程，使用 debmake 命令进行。

$ tar -xvzf package-1.0.tar.gz
$ cd package-1.0
$ debmake
... Make manual adjustments of generated configuration files

$ debuild

如果跳过了对生成的配置文件的手工调整流程，则最终生成的二进制软件包将缺少有意义的软件包描
述信息，但是仍然能为 dpkg 命令所使用，在本地部署环境下正常工作。

小心

这里的 debmake 命令只提供一些不错的模板文件。如果生成的软件包需要发布
出去供公众使用的话，这些模板文件必须手工调整至最佳状态以遵从 Debian 仓
库的严格质量标准。

如果您在 Debian 打包方面还是个新手的话，此时不要过多在意细节问题，请先专注于理解整体的流
程。

If you are familiar with Debian packaging, you’ll notice that debmake is similar to the dh_make
command. This is because debmake is designed to replace the functionality historically provided by
dh_make. 1

debmake 命令设计提供如下特性与功能：

• 现代的打包风格

– debian/copyright：遵循“DEP-5”规范

– debian/control：substvar 支持、multiarch 支持、生成多个二进制软件包、……

– debian/rules：dh 语法、编译器加固选项、……

• 灵活性

– 许多选项（参见“第 16.2 节”、“第 15 章”和“第 16 章”）

• 合理的默认行为

– 执行过程不中断，输出干净的结果

– 生成多架构支持（multiarch）的软件包，除非明确指定了 -m 选项。

– 生成非原生 Debian 软件包，使用“3.0 (quilt)”格式，除非明确指定了 -n 选项。

• 额外的功能

1Before dh_make, the deb-make command was popular. The current debmake package starts its version from 4.0 to avoid
version conflicts with the obsolete debmake package, which provided the “deb-make”command.

3

https://www.gnu.org/prep/standards/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://dep-team.pages.debian.net/deps/dep5/

CHAPTER 2. 概览

– 根据当前源代码对 debian/copyright 文件进行验证（请见“第 16.6 节”）

The debmake command delegates most of the heavy lifting to its back-end packages: debhelper,
dpkg-dev, devscripts, sbuild, schroot, etc.

提示

Ensure that you properly quote the arguments of the -b, -f, -l, and -w options to
protect them from shell interference.

提示

非原生软件包是标准的 Debian 软件包。

提示

本文档中所有软件包构建示例的详细日志可以由“第 14.14 节”一段给出的操作来
获取。

注意

The generation of the debian/copyright file, and the outputs from the -c (see “第
 16.3 节”) and -k (see “第 16.6 节”) options involve heuristic operations on the
copyright and license information. They may produce some erroneous results.

4

Chapter 3

预备知识

这里给出您在投入 Debian 相关工作之前应当理解掌握的一些必备的预备知识。

3.1 Debian 社区的工作者

在 Debian 社区中有这几类常见的角色：

• 上游作者（upstream author）：程序的原始作者。

• 上游维护者（upstream maintainer）：目前在上游维护程序代码的人。

• 软件包维护者（maintainer）：制作并维护该程序 Debian 软件包的人。

• 赞助者（sponsor）：帮助维护者上传软件包到 Debian 官方仓库的人（在通过内容检查之后）。

• 导师（mentor）：帮助新手维护者熟悉和深入打包的人。

• Debian 开发者（DD, Debian Developer）：Debian 社区的官方成员。DD 拥有向 Debian 官方仓库
上传的全部权限。

• Debian 维护者（Debian Maintainer, DM）：拥有对 Debian 官方仓库部分上传权限的人。

Please note that you can’t become an official Debian Developer (DD) overnight, as it requires more
than just technical skills. Don’t be discouraged by this. If your work is useful to others, you can still
upload your package either as a maintainer through a sponsor or as a Debian Maintainer.

Please note that you don’t need to create new packages to become an official Debian Developer.
Contributing to existing packages can also provide a path to becoming an official Debian Developer.
There are many packages waiting for good maintainers (see “” ̀ 第 3.8 节” ̀”).

3.2 如何做出贡献

请参考下列文档来了解应当如何为 Debian 作出贡献：

• “您如何协助 Debian？”（官方）

• “The Debian GNU/Linux 常见问题，第 13 章 - “向 Debian 计划作出贡献””（半官方）

• “Debian Wiki, HelpDebian”（补充内容）

• “Debian 新成员站点”（官方）

• “Debian Mentors FAQ”（补充内容）

5

https://www.debian.org/intro/help
https://www.debian.org/doc/manuals/debian-faq/contributing
https://wiki.debian.org/HelpDebian
https://nm.debian.org/
https://wiki.debian.org/DebianMentorsFaq

CHAPTER 3. 预备知识 3.3. DEBIAN 的社会驱动力

3.3 Debian 的社会驱动力

为做好准备和 Debian 进行交互，请理解 Debian 的社会动力学：

• 我们都是志愿者。

– 任何人都不能把事情强加给他人。

– 您应该主动地做自己要做的事情。

• 友好的合作是我们前行的动力。

– 您的贡献不应致使他人增加负担。

– 只有当别人欣赏和感激您的贡献时，它才有真正的价值。

• Debian 并不是一所学校，在这里没有所谓的老师会自动地注意到您。

– 您需要有独立学习大量知识和技能的能力。

– 其他志愿者的关注是比较稀缺的资源。

• Debian 一直在不断进步。

– Debian 期望您制作出高质量的软件包。

– 您应该随时调整自己来适应变化。

在这篇指南之后的部分中，我们只关注打包的技术方面。因此，请参考下面的文档来理解 Debian 的
社会动力学：

• “Debian：17 年的自由软件、“实干主义”、和民主”（前任 DPL 制作的介绍性幻灯片）

3.4 技术提醒

这里给出一些技术上的建议，参考行事可以让您与其他维护者共同维护软件包时变得更加轻松有效，从
而让 Debian 项目的输出成果最大化。

• 让您的软件包容易除错（debug）。

– 保持您的软件包简单易懂。

– 不要对软件包过度设计。

• 让您的软件包拥有良好的文档记录。

– 使用可读的代码风格。

– 在代码中写注释。

– 格式化代码使其风格一致。

– 维护软件包的 git 仓库 1。

注意

对软件进行除错（debug）通常会比编写初始可用的软件花费更多的时间。

即使是开发系统，在不稳定（unstable）套件下运行基本系统也是不明智的。

• Creation and verification of binary deb packages should use a minimal unstable chroot as de-
scribed in “第 4.6 节”.

1绝大多数 Debian 维护者使用 git 而非其它版本控制系统，如 hg、bzr 等等。

6

http://upsilon.cc/~zack/talks/2011/20110321-taipei.pdf

CHAPTER 3. 预备知识 3.5. DEBIAN 文档

• Basic interactive package development activities should use an unstable chroot as described in
“第 4.7 节”.

注意

Advanced package development activities, such as testing full Desktop systems,
network daemons, and system installer packages, should use the unstable suite
running under “virtualization”.

3.5 Debian 文档

Please make yourself ready to read the pertinent part of the latest Debian documentation to generate
perfect Debian packages:

• “Debian 政策手册”

– 正式的，“必须遵循”的规则 (https://www.debian.org/doc/devel-manuals#policy)

• “Debian 开发者参考”

– 官方的“最佳实践”文档（https://www.debian.org/doc/devel-manuals#devref）

• “Debian 维护者指南”——即本指南

– A “tutorial reference”document (https://www.debian.org/doc/devel-manuals#debmake-doc)

All these documents are published on https://www.debian.org using the unstable suite versions of
corresponding Debian packages. If you wish to have local access to all these documents from your base
system, please consider using techniques such as “apt-pinning”and “chroot”.

如果本指南文档的内容与官方的 Debian 文档有所冲突，那么官方的那些总是对的。请使用 reportbug
工具向 debmake-doc 软件包报告问题。

这里有一些替代性的教程文档，您可以与本指南一起阅读进行参考：

• “《Debian 打包教程》”

– https://www.debian.org/doc/devel-manuals#packaging-tutorial
– https://packages.qa.debian.org/p/packaging-tutorial.html

• “Ubuntu 打包指南”（Ubuntu 基于 Debian。）

– http://packaging.ubuntu.com/html/

• “Debian 新维护者指南”（本文档的前身，已弃用）

– https://www.debian.org/doc/devel-manuals#maint-guide
– https://packages.qa.debian.org/m/maint-guide.html

提示

When reading these, you may consider using the debmake command in place
of the dh_make command.

7

https://www.debian.org/doc/manuals/debian-reference/ch09.en.html#_multiple_desktop_systems
https://www.debian.org/doc/devel-manuals#policy
https://www.debian.org/doc/devel-manuals#devref
https://www.debian.org/doc/devel-manuals#debmake-doc
https://www.debian.org
https://www.debian.org/doc/manuals/debian-reference/ch02.en.html#_tweaking_candidate_version
https://en.wikipedia.org/wiki/Chroot
https://www.debian.org/doc/devel-manuals#packaging-tutorial
https://packages.qa.debian.org/p/packaging-tutorial.html
http://packaging.ubuntu.com/html/
https://www.debian.org/doc/devel-manuals#maint-guide
https://packages.qa.debian.org/m/maint-guide.html

CHAPTER 3. 预备知识 3.6. 帮助资源

3.6 帮助资源

Before deciding to ask your question in a public forum, please do your part by reading the relevant
documentation:

• 软件包的信息可以使用 aptitude、apt-cache 以及 dpkg 命令进行查看。

• 所有相关软件包在 /usr/share/doc/软件包名目录下的文件。

• 所有相关命令在 man 命令下输出的内容。

• 所有相关命令在 info 命令下输出的内容。

• “debian-mentors@lists.debian.org 邮件列表存档”的内容。

• “debian-devel@lists.debian.org 邮件列表存档”的内容。

You can find your desired information effectively by using a well-formed search string such as ”key-
word site:lists.debian.org” to limit the search domain of the web search engine.

Creating a small test package is a good way to learn the details of packaging. Inspecting existing
well-maintained packages is the best way to learn how other people make packages.

如果您对打包仍然存在疑问，您可以使用以下方式与他人进行沟通：

• debian-mentors@lists.debian.org mailing list. (This mailing list is for the novice.)

• debian-devel@lists.debian.org mailing list. (This mailing list is for the expert.)

• IRC such as #debian-mentors.

• 专注某个特定软件包集合的团队。（完整列表请见 https://wiki.debian.org/Teams）

• 特定语言的邮件列表。

– “debian-devel-{french,italian,portuguese,spanish}@lists.debian.org”

– “debian-chinese-gb@lists.debian.org”（该邮件列表用于一般的（简体）中文讨论。）

– “debian-devel@debian.or.jp”

More experienced Debian developers will gladly help you if you ask properly after making the required
efforts.

小心

Debian development is a moving target. Some information found on the web may
be outdated, incorrect, or non-applicable. Please use such information carefully.

3.7 仓库状况

请了解 Debian 仓库的当前状况。

• Debian 已经包含了绝大多数种类程序的软件包。

• Debian 仓库内软件包的数量是活跃维护者的数十倍。

• 遗憾的是，某些软件包缺乏维护者的足够关注。

因此，对已经存在于仓库内的软件包做出贡献是十分欢迎的（这也更有可能得到其他维护者的支持和
协助上传）。

8

https://lists.debian.org/debian-mentors/
https://lists.debian.org/debian-devel/
mailto:debian-mentors@lists.debian.org
mailto:debian-devel@lists.debian.org
https://www.debian.org/support#irc
https://wiki.debian.org/Teams
https://lists.debian.org/devel.html
https://lists.debian.org/debian-chinese-gb/
http://www.debian.or.jp/community/ml/openml.html#develML

CHAPTER 3. 预备知识 3.8. 贡献流程

提示

The wnpp-alert command from the devscripts package can check for installed
packages that are up for adoption or orphaned.

提示

The how-can-i-help package can show opportunities for contributing to Debian
based on packages installed locally.

3.8 贡献流程

这里使用类 Python 伪代码，给出了向 Debian 贡献名为 program 的软件所走的贡献流程：

if exist_in_debian(program):
if is_team_maintained(program):
join_team(program)

if is_orphaned(program): # maintainer: Debian QA Group
adopt_it(program)

elif is_RFA(program): # Request for Adoption
adopt_it(program)

else:
if need_help(program):
contact_maintainer(program)
triaging_bugs(program)
preparing_QA_or_NMU_uploads(program)

else:
leave_it(program)

else: # new packages
if not is_good_program(program):
give_up_packaging(program)

elif not is_distributable(program):
give_up_packaging(program)

else: # worth packaging
if is_ITPed_by_others(program):
if need_help(program):
contact_ITPer_for_collaboration(program)

else:
leave_it_to_ITPer(program)

else: # really new
if is_applicable_team(program):
join_team(program)

if is_DFSG(program) and is_DFSG(dependency(program)):
file_ITP(program, area="main") # This is Debian

elif is_DFSG(program):
file_ITP(program, area="contrib") # This is not Debian

else: # non-DFSG
file_ITP(program, area="non-free") # This is not Debian

package_it_and_close_ITP(program)

其中：

• 对 exist_in_debian() 和 is_team_maintained()，需检查：

– aptitude 命令

9

CHAPTER 3. 预备知识 3.9. 新手贡献者和维护者

– “Debian 软件包”网页

– Debian 维基“团队”页面

• 对 is_orphaned()、is_RFA() 和 is_ITPed_by_others()，需检查：

– wnpp-alert 命令的输出。

– “需要投入精力和未来的软件包（WNPP）”

– “Debian 缺陷报告记录：在 unstable 版本中 wnpp 伪软件包的缺陷记录”

– “需要“关爱”的 Debian 软件包”

– “基于 debtags 浏览 wnpp 缺陷记录”

• 对于 is_good_program()，请检查：

– 这个程序应当有用。

– 这个程序不应当向 Debian 系统引入安全和维护上的问题。

– 这个程序应当有良好的文档，其源代码需要可被理解（即，未经混淆）。

– 这个程序的作者同意软件被打包，且对 Debian 态度友好。2

• 对 is_it_DFSG()，及 is_its_dependency_DFSG()，请检查：

– “Debian 自由软件指导方针”（DFSG）。

• 对 is_it_distributable()，请检查：

– 该软件必须有一个许可证，其中应当允许软件被发行。

You either need to file an ITP or adopt a package to start working on it. See the “Debian Developer’
s Reference”:

• “5.1. 新软件包”。

• “5.9. 移动、删除、重命名、丢弃、接手和重新引入软件包”。

3.9 新手贡献者和维护者

新手贡献者和维护者可能想知道在开始向 Debian 进行贡献之前需要事先学习哪些知识。根据您个人的
侧重点不同，下面有我的一些建议供您参考：

• 打包

– POSIX shell 和 make 的基本知识。

– 一些 Perl 和 Python 的入门知识。

• 翻译

– 基于 PO 的翻译系统的工作原理和基本知识。

• 文档

– 文本标记语言的基础知识（XML、ReST、Wiki 等）。

新手贡献者和维护者可能想知道从哪里开始向 Debian 进行贡献。根据您掌握的技能，下面有我的一
些建议供您参考：

• POSIX shell、Perl 和 Python 的技巧：

– 向 Debian 安装器提交补丁。

– Send patches to the Debian packaging helper scripts such as devscripts, sbuild, schroot,
etc. mentioned in this document.

2这一条不是绝对的要求，但请注意：遇上不友好的上游可能需要大家为此投入大量精力，而一个友好的上游则能协助解决程
序的各类问题。

10

https://www.debian.org/distrib/packages
https://wiki.debian.org/Teams
https://www.debian.org/devel/wnpp/
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=wnpp;dist=unstable
https://wnpp.debian.net/
https://wnpp-by-tags.debian.net/
https://www.debian.org/social_contract#guidelines
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#newpackage
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#archive-manip

CHAPTER 3. 预备知识 3.9. 新手贡献者和维护者

• C 和 C++ 技能：

– 向具有 required 和 important 优先级的软件包提交补丁。

• 英语之外的技能：

– 向 Debian 安装器项目提交补丁。

– 为具有 required 和 important 优先级的软件包中的 PO 文件提交补丁。

• 文档技能：

– 更新“Debian 维基（Wiki）”中的内容。

– 向已有的“Debian 文档”提交补丁。

这些活动应当能让您在各位 Debian 社区成员之间得到存在感，从而建立您的信誉与名气。
新手维护者应当避免打包具有潜在高度安全隐患的程序：

• setuid 或 setgid 程序

• 守护进程（daemon）程序

• 安装至 /sbin/ 或 /usr/sbin/ 目录的程序

在积累足够的打包经验后，您可以再尝试打包这样的程序。

11

https://wiki.debian.org/
https://www.debian.org/doc/

Chapter 4

工具的配置

build-essential 软件包必须在构建环境内预先安装。
The devscripts package should be installed in the development environment of the maintainer.
It is a good idea to install and set up all of the popular set of packages mentioned in this chapter.

These enable us to share the common baseline working environment, although these are not necessarily
absolute requirements.

Please also consider to install the tools mentioned in the “Overview of Debian Maintainer Tools”in the
“Debian Developer’s Reference”, as needed.

小心

这里展示的工具配置方式仅作为示例提供，可能与系统上最新的软件包相比有所
落后。Debian 的开发具有一个移动的目标。请确保阅读合适的文档并按照需要更
新配置内容。

4.1 Email setup
许多 Debian 维护工具识别并使用 shell 环境变量 $DEBEMAIL 和 $DEBFULLNAME 作为作为您的电子
邮件地址和名称。

Let’s set these environment variables by adding the following lines to ~/.bashrc 1.
添加至 ~/.bashrc 文件

DEBEMAIL="osamu@debian.org"
DEBFULLNAME="Osamu Aoki"
export DEBEMAIL DEBFULLNAME

注意

上面的例子使用了本指南作者的个人信息作为示例。本指南展示的配置和操作实
例都将使用这里的电子邮件地址和名称设置。在您的系统上，您必须使用您自己
的电子邮件地址和姓名。

1这里假设您正在使用 Bash 并以此作为登录默认 shell。如果您设置了其它登录 shell，例如 Z shell，请使用它们对应的配置文
件替换 ~/.bashrc 文件。

12

https://www.debian.org/doc/manuals/developers-reference/tools.html

CHAPTER 4. 工具的配置 4.2. MC 设置

4.2 mc 设置

mc 命令提供了管理文件的简单途径。它可以打开二进制 deb 文件，并仅需对二进制 deb 文件按下回车
键便能检查其内容。它调用了 dpkg-deb 命令作为其后端。我们可以按照下列方式对其配置，以支持简
易 chdir 操作。

添加至 ~/.bashrc 文件

mc related
if [-f /usr/lib/mc/mc.sh]; then
. /usr/lib/mc/mc.sh

fi

4.3 git 设置

如今 git 命令已成为管理带历史的源码树的必要工具。
git 命令的用户级全局配置，如您的名字和电子邮件地址，保存在 ~/.gitconfig 文件中，且可以使用

如下方式配置。

$ git config --global user.name "Osamu Aoki"
$ git config --global user.email osamu@debian.org

如果您仍然只习惯 CVS 或者 Subversion 的命令风格，您可以使用如下方式设置几个命令别名。

$ git config --global alias.ci "commit -a"
$ git config --global alias.co checkout

您可以使用如下命令检查全局配置。

$ git config --global --list

提示

有必要使用某些图形界面 git 工具，例如 gitk 或 gitg 命令来有效地处理 git 仓库
的历史。

4.4 quilt 设置

quilt 命令提供了记录修改的一个基本方式。对 Debian 打包来说，该工具需要进行自定义，从而在
debian/patches/ 目录内记录修改内容，而非使用默认的 patches/ 目录。

为了避免改变 quilt 命令自身的行为，我们在这里创建一个用于 Debian 打包工作的命令别名：
dquilt。之后，我们将对应内容写入 ~/.bashrc 文件。下面给出的第二行为 dquilt 命令提供与 quilt 命令
相同的命令行补全功能。

添加至 ~/.bashrc 文件

alias dquilt="quilt --quiltrc=${HOME}/.quiltrc-dpkg"
. /usr/share/bash-completion/completions/quilt
complete -F _quilt_completion $_quilt_complete_opt dquilt

然后我们来创建具有如下内容的 ~/.quiltrc-dpkg 文件。

d=.
while [! -d $d/debian -a `readlink -e $d` != /];

do d=$d/..; done
if [-d $d/debian] && [-z $QUILT_PATCHES]; then

if in Debian packaging tree with unset $QUILT_PATCHES
QUILT_PATCHES="debian/patches"

13

CHAPTER 4. 工具的配置 4.5. DEVSCRIPTS 设置

QUILT_PATCH_OPTS="--reject-format=unified"
QUILT_DIFF_ARGS="-p ab --no-timestamps --no-index --color=auto"
QUILT_REFRESH_ARGS="-p ab --no-timestamps --no-index"
QUILT_COLORS="diff_hdr=1;32:diff_add=1;34:diff_rem=1;31:diff_hunk=1;33:"
QUILT_COLORS="${QUILT_COLORS}diff_ctx=35:diff_cctx=33"
if ! [-d $d/debian/patches]; then mkdir $d/debian/patches; fi

fi

See quilt(1) and “How To Survive With Many Patches or Introduction to Quilt (quilt.html)”on how to
use the quilt command.

要获取使用示例，请查看“第 5.9 节”。
Note that “gbp pq”is able to consume existing debian/patches, automate updating and modifying

the patches, and export them back into debian/patches, all without using quilt nor the need to learn or
configure quilt.

4.5 devscripts 设置

debsign 命令由 devscripts 软件包提供，它可以使用用户的 GPG 私钥对 Debian 软件包进行签名。
debuild 命令同样由 devscripts 软件包提供，它可以构建二进制软件包并使用 lintian 命令对其进行

检查。lintian 命令的详细输出通常都很实用。
您可以将下列内容写入 ~/.devscripts 文件来进行配置。

DEBUILD_DPKG_BUILDPACKAGE_OPTS="-i -I -us -uc"
DEBUILD_LINTIAN_OPTS="-i -I --show-overrides"
DEBSIGN_KEYID="Your_GPG_keyID"

The -i and -I options in DEBUILD_DPKG_BUILDPACKAGE_OPTS for the dpkg-source command
help rebuilding of Debian packages without extraneous contents (see “第 8 章”).

当前情况下，使用 4096 位的 RSA 密钥是较好的做法。另见“创建一个新 GPG 密钥”。

4.6 sbuild 设置

The sbuild package provides a clean room (“chroot”) build environment. It offers this efficiently with the
help of schroot using the bind-mount feature of the modern Linux kernel.

Since it is the same build environment as the Debian’s buildd infrastructure, it is always up to date
and comes full of useful features.

It can be customized to offer following features:

• The schroot package to boost the chroot creation speed.

• lintian 软件包能找到所构建软件包中的缺陷。

• The piuparts package to find bugs in the package.

• The autopkgtest package to find bugs in the package.

• ccache 软件包可以加速 gcc。（可选）

• libeatmydata1 软件包可以加速 dpkg。（可选）

• 并行运行 make 以提高构建速度。（可选）

Let’s set up sbuild environment 2:

$ sudo apt install sbuild piuparts autopkgtest lintian
$ sudo apt install sbuild-debian-developer-setup
$ sudo sbuild-debian-developer-setup -s unstable

Let’s update your group membership to include sbuild and verify it:

2Be careful since some older HOWTOs may use different chroot setups.

14

file:///usr/share/doc/quilt/quilt.html
https://manpages.debian.org/unstable/git-buildpackage/gbp-pq.1.en.html
https://keyring.debian.org/creating-key.html
https://en.wikipedia.org/wiki/Chroot
https://buildd.debian.org/

CHAPTER 4. 工具的配置 4.6. SBUILD 设置

$ newgrp -
$ id
uid=1000(<yourname>) gid=1000(<yourname>) groups=...,132(sbuild)

Here, “reboot of system”or “kill -TERM -1”can be used instead to update your group membership 3 .
Let’s create the configuration file ~/.sbuildrc in line with recent Debian practice of “source-only-

upload”as:

cat >~/.sbuildrc << 'EOF'
##
PACKAGE BUILD RELATED (source-only-upload as default)
##
-d
$distribution = 'unstable';
-A
$build_arch_all = 1;
-s
$build_source = 1;
--source-only-changes
$source_only_changes = 1;
-v
$verbose = 1;

##
POST-BUILD RELATED (turn off functionality by setting variables to 0)
##
$run_lintian = 1;
$lintian_opts = ['-i', '-I'];
$run_piuparts = 1;
$piuparts_opts = ['--schroot', 'unstable-amd64-sbuild'];
$run_autopkgtest = 1;
$autopkgtest_root_args = '';
$autopkgtest_opts = ['--', 'schroot', '%r-%a-sbuild'];

##
PERL MAGIC
##
1;
EOF

注意

There are some exceptional cases such as NEW uploads, uploads with NEW
binary packages, and security uploads where you can’t do source-only-upload
but are required to upload with binary packages. The above configuration needs
to be adjusted for those exceptional cases.

Following document assumes that sbuild is configured this way.
Edit this to your needs. Post-build tests can be turned on and off by assigning 1 or 0 to the corre-

sponding variables,

警告

可选的自定义项可能造成负面影响。如果有疑问，请禁用它们。

3Simply “logout and login under some modern GUI Desktop environment”may not update your group membership.

15

https://wiki.debian.org/SourceOnlyUpload
https://wiki.debian.org/SourceOnlyUpload
https://wiki.debian.org/SourceOnlyUpload

CHAPTER 4. 工具的配置 4.7. PERSISTENT CHROOT SETUP

注意

并行的 make 可能在某些已有软件包上运行失败，它同样会使得构建日志难以阅
读。

提示

Many sbuild related hints are available at “第 9.7 节”and
“https://wiki.debian.org/sbuild”.

4.7 Persistent chroot setup

注意

Use of independent copied chroot filesystem prevents contaminating the source
chroot used by sbuild.

For building new experimental packages or for debugging buggy packages, let’s setup dedicated
persistent chroot “source:unstable-amd64-desktop”by:

$ sudo cp -a /srv/chroot/unstable-amd64-sbuild /srv/chroot/unstable-amd64-desktop
$ sudo tee /etc/schroot/chroot.d/unstable-amd64-desktop-XXXXXX << EOF
[unstable-desktop]
description=Debian sid/amd64 persistent chroot
groups=root,sbuild
root-groups=root,sbuild
profile=desktop
type=directory
directory=/srv/chroot/unstable-amd64-desktop
union-type=overlay
EOF

Here, desktop profile is used instead of sbuild profile. Please make sure to adjust /etc/schroot/desktop/fstab
to make package source accessible from inside of the chroot.

You can log into this chroot “source:unstable-amd64-desktop”by:

$ sudo schroot -c source:unstable-amd64-desktop

4.8 gbp 设置

The git-buildpackage package offers the gbp(1) command. Its user configuration file is ~/.gbp.conf.

Configuration file for "gbp <command>"

[DEFAULT]
the default build command:
builder = sbuild

16

https://wiki.debian.org/sbuild

CHAPTER 4. 工具的配置 4.9. HTTP 代理

use pristine-tar:
pristine-tar = True
Use color when on a terminal, alternatives: on/true, off/false or auto
color = auto

4.9 HTTP 代理

您应当在本地设置 HTTP 缓存代理以节约访问 Debian 软件仓库的带宽。可以考虑以下几种选项：

• 特化的 HTTP 缓存代理，使用 apt-cacher-ng 软件包。

• Generic HTTP caching proxy (squid package) configured by squid-deb-proxy package

In order to use this HTTP proxy without manual configuration adjustment, it’s a good idea to install
either auto-apt-proxy or squid-deb-proxy-client package to everywhere.

4.10 私有 Debian 仓库

您可以使用 reprepro 软件包搭建私有 Debian 仓库。

4.11 虚拟机

For testing GUI application, it is a good idea to have virtual machines. Install virt-manager and qemu-
kvm packages.

Use of chroot and virtual machines allows us not to update the whole host PC to the latest unstable
suite.

4.12 本地网络中的虚拟机

如需经由本地网络轻松访问虚拟机，可以考虑安装 avahi-utils 来设置 DNS 多播服务的自动发现基础设
施。

对所有运行中的虚拟机以及主机，我们可以使用各自的主机名加上后缀的 .local 来使用 SSH 互相访
问。

17

Chapter 5

简单打包

There is an old Latin saying: “Longum iter est per praecepta, breve et efficax per exempla”(“It’s a
long way by the rules, but short and efficient with examples”).

5.1 Packaging tarball
这里给出了从简单的 C 语言源代码创建简单的 Debian 软件包的例子，并假设上游使用了 Makefile 作为
构建系统。

我们假设上游源码压缩包（tarball）名称为 debhello-0.0.tar.gz。
这一类源代码设计可以用这样的方式安装成为非系统文件：
Basics for the install from the upstream tarball

$ tar -xzmf debhello-0.0.tar.gz
$ cd debhello-0.0
$ make
$ make install

Debian packaging requires changing this “make install”process to install files to the target system
image location instead of the normal location under /usr/local.

注意

在其它更加复杂的构建系统下构建 Debian 软件包的例子可以在“第 14 章”找到。

5.2 大致流程

从上游源码压缩包 debhello-0.0.tar.gz 构建单个非原生 Debian 软件包的大致流程可以总结如下：

• 维护者获取上游源码压缩包 debhello-0.0.tar.gz 并将其内容解压缩至 debhello-0.0 目录中。

• debmake 命令对上游源码树进行 debian 化（debianize），具体来说，是创建一个 debian 目录并
仅向该目录中添加各类模板文件。

– 名为 debhello_0.0.orig.tar.gz 的符号链接被创建并指向 debhello-0.0.tar.gz 文件。

– 维护者须自行编辑修改模板文件。

• debuild 命令基于已 debian 化的源码树构建二进制软件包。

– debhello-0.0-1.debian.tar.xz 将被创建，它包含了 debian 目录。

软件包构建的大致流程

18

CHAPTER 5. 简单打包 5.3. 什么是 DEBMAKE？

$ tar -xzmf debhello-0.0.tar.gz
$ cd debhello-0.0
$ debmake
... manual customization

$ debuild
...

提示

The debuild command in this and following examples may be substituted by
equivalent commands such as the sbuild command.

提示

如果上游源码压缩包提供了 .tar.xz 格式文件，请使用这样的压缩包来替代
.tar.gz 或 .tar.bz2 格式。xz 压缩与 gzip 或 bzip2 压缩相比提供了更好的压
缩比。

5.3 什么是 debmake？

注意

Actual packaging activities are often performed manually without using debmake
while referencing only existing similar packages and “Debian Policy Manual”.

The debmake command is the helper script for the Debian packaging. (“第 15 章”)

• It creates good template files for the Debian packages.

• 它总是将大多数选项的状态与参数设置为合理的默认值。

• 它能产生上游源码包，并按需创建所需的符号链接。

• 它不会覆写 debian/ 目录下已存在的配置文件。

• 它支持多架构（multiarch）软件包。

• It provides short extracted license texts as debian/copyright in decent accuracy to help license
review.

这些特性使得使用 debmake 进行 Debian 打包工作变得简单而现代化。
In retrospective, I created debmake to simplify this documentation. I consider debmake to be more-

or-less a demonstration session generator for tutorial purpose.
The debmake command isn’t the only helper script to make a Debian package. If you are interested

alternative packaging helper tools, please see:

• Debian wiki: “AutomaticPackagingTools” — Extensive comparison of packaging helper scripts

• Debian wiki: “CopyrightReviewTools” — Extensive comparison of copyright review helper scripts

19

https://www.debian.org/doc/debian-policy/
https://wiki.debian.org/AutomaticPackagingTools
https://wiki.debian.org/CopyrightReviewTools

CHAPTER 5. 简单打包 5.4. 什么是 DEBUILD？

5.4 什么是 debuild？

这里给出与 debuild 命令类似的一系列命令的一个汇总。

• debian/rules 文件定义了 Debian 二进制软件包该如何构建。

• dpkg-buildpackge 是构建 Debian 二进制软件包的正式命令。对于正常的二进制构建，它大体上
会执行以下操作：

– “dpkg-source --before-build”(apply Debian patches, unless they are already applied)
– “fakeroot debian/rules clean”
– “dpkg-source --build”构建 Debian 源码包）
– “fakeroot debian/rules build”
– “fakeroot debian/rules binary”
– “dpkg-genbuildinfo”(generate a *.buildinfo file)
– “dpkg-genchanges”(generate a *.changes file)
– “fakeroot debian/rules clean”
– “dpkg-source --after-build”(unapply Debian patches, if they are applied during --before-

build)
– “debsign”(sign the *.dsc and *.changes files)

* 如果您按照“第 4.5 节”的说明设置了 -us 和 -us 选项的话，本步骤将会被跳过。您需要
手动运行 debsign 命令。

• debuild 命令是 dpkg-buildpackage 命令的一个封装脚本，它可以使用合适的环境变量来构建
Debian 二进制软件包。

• The sbuild command is a wrapper script to build the Debian binary package under the proper
chroot environment with the proper environment variables.

注意

如需了解详细内容，请见 dpkg-buildpackage(1)。

5.5 第一步：获取上游源代码

我们先要获取上游源代码。
下载 debhello-0.0.tar.gz

$ wget http://www.example.org/download/debhello-0.0.tar.gz
...
$ tar -xzmf debhello-0.0.tar.gz
$ tree
.
+-- debhello-0.0
| +-- Makefile
| +-- README.md
| +-- src
| +-- hello.c
+-- debhello-0.0.tar.gz

3 directories, 4 files

这里的 C 源代码 hello.c 非常的简单。
hello.c

20

CHAPTER 5. 简单打包 5.6. STEP 2: GENERATE TEMPLATE FILES …

$ cat debhello-0.0/src/hello.c
#include <stdio.h>
int
main()
{

printf("Hello, world!\n");
return 0;

}

这里，源码中的 Makefile 支持“GNU 编码标准”和“FHS（文件系统层级规范）”。特别地：

• 构建二进制程序时会考虑 $(CPPFLAGS)、$(CFLAGS)、$(LDFLAGS)，等等。

• 安装文件时采纳 $(DESTDIR) 作为目标系统镜像的路径前缀

• 安装文件时使用 $(prefix) 的值，以便我们将其设置覆盖为 /usr

Makefile
$ cat debhello-0.0/Makefile
prefix = /usr/local

all: src/hello

src/hello: src/hello.c
@echo "CFLAGS=$(CFLAGS)" | \

fold -s -w 70 | \
sed -e 's/^/# /'

$(CC) $(CPPFLAGS) $(CFLAGS) $(LDCFLAGS) -o $@ $^

install: src/hello
install -D src/hello \

$(DESTDIR)$(prefix)/bin/hello

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello

.PHONY: all install clean distclean uninstall

注意

对 $(CFLAGS) 的 echo 命令用于在接下来的例子中验证所设置的构建参数。

5.6 Step 2: Generate template files with debmake
debmake 命令的输出十分详细，如下所示，它可以展示程序的具体操作内容。

The output from the debmake command
$ cd /path/to/debhello-0.0
$ debmake -x1
I: set parameters
I: sanity check of parameters
I: pkg="debhello", ver="0.0", rev="1"

21

https://www.gnu.org/prep/standards/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

CHAPTER 5. 简单打包 5.6. STEP 2: GENERATE TEMPLATE FILES …

I: *** start packaging in "debhello-0.0". ***
I: provide debhello_0.0.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-0.0.tar.gz debhello_0.0.orig.tar.gz
I: pwd = "/path/to/debhello-0.0"
I: parse binary package settings:
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: analyze the source tree
I: build_type = make
I: scan source for copyright+license text and file extensions
I: 50 %, ext = md
I: 50 %, ext = c
I: check_all_licenses
I: ...
I: check_all_licenses completed for 3 files.
I: bunch_all_licenses
I: format_all_licenses
I: make debian/* template files
I: debmake -x "1" ...
I: creating => debian/control
I: creating => debian/copyright
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra0_changel...
I: creating => debian/changelog
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra0_rules.t...
I: creating => debian/rules
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra0source_f...
I: creating => debian/source/format
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_README....
I: creating => debian/README.Debian
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_README....
I: creating => debian/README.source
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_clean.t...
I: creating => debian/clean
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_gbp.con...
I: creating => debian/gbp.conf
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_salsa-c...
I: creating => debian/salsa-ci.yml
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1_watch.t...
I: creating => debian/watch
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1tests_co...
I: creating => debian/tests/control
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1upstream...
I: creating => debian/upstream/metadata
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1patches_...
I: creating => debian/patches/series
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1source.n...
I: creating => debian/source/local-options.ex
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1source.n...
I: creating => debian/source/local-patch-header.ex
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1single_d...
I: creating => debian/dirs
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1single_i...
I: creating => debian/install
I: substituting => /usr/lib/python3/dist-packages/debmake/data/extra1single_l...
I: creating => debian/links
I: $ wrap-and-sort -vast
debian/control
debian/tests/control
debian/copyright
debian/dirs
debian/install
debian/links
--- Modified files ---
debian/control

22

CHAPTER 5. 简单打包 5.6. STEP 2: GENERATE TEMPLATE FILES …

debian/dirs
debian/install
debian/links
I: $ wrap-and-sort -vast complete. Now, debian/* may have a blank line at th...

debmake 命令基于命令行选项产生所有这些模板文件。如果没有指定具体选项，debmake 命令将为
您自动选择合理的默认值：

• 源码包名称：debhello

• 上游版本：0.0

• 二进制软件包名称：debhello

• Debian 修订版本：1

• 软件包类型：bin（ELF 二进制可执行程序软件包）

• The -x option: -x1 (without maintainer script supports for simplicity)

注意

Here, the debmake command is invoked with the -x1 option to keep this tutorial
simple. Use of default -x3 option is highly recommended.

我们来检查一下自动产生的模板文件。
基本 debmake 命令运行后的源码树。

$ cd /path/to
$ tree
.
+-- debhello-0.0
| +-- Makefile
| +-- README.md
| +-- debian
| | +-- README.Debian
| | +-- README.source
| | +-- changelog
| | +-- clean
| | +-- control
| | +-- copyright
| | +-- dirs
| | +-- gbp.conf
| | +-- install
| | +-- links
| | +-- patches
| | | +-- series
| | +-- rules
| | +-- salsa-ci.yml
| | +-- source
| | | +-- format
| | | +-- local-options.ex
| | | +-- local-patch-header.ex
| | +-- tests
| | | +-- control
| | +-- upstream
| | | +-- metadata
| | +-- watch
| +-- src
| +-- hello.c
+-- debhello-0.0.tar.gz

23

CHAPTER 5. 简单打包 5.6. STEP 2: GENERATE TEMPLATE FILES …

+-- debhello_0.0.orig.tar.gz -> debhello-0.0.tar.gz

8 directories, 24 files

这里的 debian/rules 文件是应当由软件包维护者提供的构建脚本。此时该文件是由 debmake 命令
产生的模板文件。

debian/rules（模板文件）：

$ cd /path/to/debhello-0.0
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@

#override_dh_auto_install:
dh_auto_install -- prefix=/usr

#override_dh_install:
dh_install --list-missing -X.pyc -X.pyo

这便是使用 dh 命令时标准的 debian/rules 文件。（某些内容已被注释，可供后续修改使用。）
这里的 debian/control 文件提供了 Debian 软件包的主要元信息。此时该文件是由 debmake 命令产

生的模板文件。
debian/control（模板文件）：

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.0
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

警告

If you leave “Section: unknown”in the template debian/control file unchanged,
the lintian error may cause the build to fail.

Since this is the ELF binary executable package, the debmake command sets “Architecture: any”

24

CHAPTER 5. 简单打包 5.7. 第三步：编辑模板文件

and “Multi-Arch: foreign”. Also, it sets required substvar parameters as “Depends: ${shlibs:Depends},
${misc:Depends}”. These are explained in “第 6 章”.

注意

Please note this debian/control file uses the RFC-822 style as documented in
“5.2 Source package control files — debian/control”of the “Debian Policy Manual”
. The use of the empty line and the leading space are significant.

这里的 debian/copyright 提供了 Debian 软件包版权数据的总结。此时该文件是由 debmake 命令产
生的模板文件。

debian/copyright（模板文件）：

$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: <preferred name and address to reach the upstream project>
Source: <url://example.com>
#
Please double check copyright with the licensecheck(1) command.

Files: Makefile
README.md
src/hello.c

Copyright: __NO_COPYRIGHT_NOR_LICENSE__
License: __NO_COPYRIGHT_NOR_LICENSE__

#--...
Files marked as NO_LICENSE_TEXT_FOUND may be covered by the following
license/copyright files.

5.7 第三步：编辑模板文件

作为维护者，要制作一个合适的 Debian 软件包当然需要对模板内容进行一些手工的调整。
In order to install files as a part of the system files, the $(prefix) value of /usr/local in the Makefile

should be overridden to be /usr. This can be accommodated by the following the debian/rules file with
the override_dh_auto_install target setting “prefix=/usr”.

debian/rules（维护者版本）：

$ cd /path/to/debhello-0.0
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

override_dh_auto_install:
dh_auto_install -- prefix=/usr

如上在 debian/rules 文件中导出 =DH_VERBOSE 环境变量可以强制 debhelper 工具输出细粒度的
构建报告。

25

https://www.debian.org/doc/debian-policy/ch-controlfields.html#source-package-control-files-debian-control

CHAPTER 5. 简单打包 5.7. 第三步：编辑模板文件

Exporting DEB_BUILD_MAINT_OPTION as above sets the hardening options as described in the
“FEATURE AREAS/ENVIRONMENT”in dpkg-buildflags(1). 1

如上导出 DEB_CFLAGS_MAINT_APPEND 可以强制 C 编译器给出所有类型的警告内容。
如上导出 DEB_LDFLAGS_MAINT_APPEND 可以强制链接器只对真正需要的库进行链接。2
The dh_auto_install command for the Makefile based build system essentially runs “$(MAKE) in-

stall DESTDIR=debian/debhello”. The creation of this override_dh_auto_install target changes its
behavior to “$(MAKE) install DESTDIR=debian/debhello prefix=/usr”.

这里是维护者版本的 debian/control 和 debian/copyright 文件。
debian/control（维护者版本）：

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

debian/copyright（维护者版本）：

$ vim debian/copyright
... hack, hack, hack, ...
$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

1This is a cliché to force a read-only relocation link for the hardening and to prevent the lintian warning “W: debhello:
hardening-no-relro usr/bin/hello”. This is not really needed for this example but should be harmless. The lintian tool seems
to produce a false positive warning for this case which has no linked library.

2这里的做法是为了避免在依赖库情况复杂的情况下过度链接，例如某些 GNOME 程序。这样做对这里的简单例子来说并不是
必要的，但应当是无害的。

26

CHAPTER 5. 简单打包 5.8. STEP 4: BUILDING PACKAGE WITH …

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Let’s remove unused template files and edit remaining template files:

• debian/README.source

• debian/source/local-option.ex

• debian/source/local-patch-header.ex

• debian/patches/series (No upstream patch)

• clean

• dirs

• install

• links

debian/. 下面的模板文件（0.0 版）：

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 11 files

提示

对于来自 debhelper 软件包的各个 dh_* 命令来说，它们在读取所使用的配置文
件时通常把以 # 开头的行视为注释行。

5.8 Step 4: Building package with debuild
您可以使用 debuild 或者等效的命令工具（参见“第 5.4 节”）在这个源码树内构建一个非原生 Debian 软
件包。命令的输出通常十分详细，如下所示，它会对构建中执行的操作进行解释。

Building package with debuild

27

CHAPTER 5. 简单打包 5.8. STEP 4: BUILDING PACKAGE WITH …

$ cd /path/to/debhello-0.0
$ debuild
dpkg-buildpackage -us -uc -ui -i
dpkg-buildpackage: info: source package debhello
dpkg-buildpackage: info: source version 0.0-1
dpkg-buildpackage: info: source distribution unstable
dpkg-buildpackage: info: source changed by Osamu Aoki <osamu@debian.org>
dpkg-source -i --before-build .
dpkg-buildpackage: info: host architecture amd64
debian/rules clean
dh clean

dh_auto_clean
make -j12 distclean

...
debian/rules binary
dh binary

dh_update_autotools_config
dh_autoreconf
dh_auto_configure
dh_auto_build

make -j12 "INSTALL=install --strip-program=true"
make[1]: Entering directory '/path/to/debhello-0.0'
CFLAGS=-g -O2 -Werror=implicit-function-declaration
...
Finished running lintian.

这里验证了 CFLAGS 已经得到了更新，添加了 -Wall 和 -pendatic 参数；这是我们先前在 DEB_CFLAGS_MAINT_APPEND
变量中所指定的。

根据 lintian 的报告，您应该如同后文中的例子那样（请见“第 14 章”）为软件包添加 man 手册页。
我们这里暂且跳过这部分内容。

现在我们来看看成果如何。
debhello 0.0 版使用 debuild 命令产生的文件：

$ cd /path/to
$ tree -FL 1
./
+-- debhello-0.0/
+-- debhello-0.0.tar.gz
+-- debhello-dbgsym_0.0-1_amd64.deb
+-- debhello_0.0-1.debian.tar.xz
+-- debhello_0.0-1.dsc
+-- debhello_0.0-1_amd64.build
+-- debhello_0.0-1_amd64.buildinfo
+-- debhello_0.0-1_amd64.changes
+-- debhello_0.0-1_amd64.deb
+-- debhello_0.0.orig.tar.gz -> debhello-0.0.tar.gz

2 directories, 9 files

您可以看见生成的全部文件。

• debhello_0.0.orig.tar.gz 是指向上游源码压缩包的符号链接。

• debhello_0.0-1.debian.tar.xz 包含了维护者生成的内容。

• debhello_0.0-1.dsc 是 Debian 源码包的元数据文件。

• debhello_0.0-1_amd64.deb 是 Debian 二进制软件包。

• debhello-dbgsym_0.0-1_amd64.deb 是 Debian 的调试符号二进制软件包。另请参见“第 10.21
节”。

• debhello_0.0-1_amd64.build 是构建日志文件。

• debhello_0.0-1_amd64.buildinfo 是 dpkg-genbuildinfo(1) 生成的元数据文件。

28

CHAPTER 5. 简单打包 5.8. STEP 4: BUILDING PACKAGE WITH …

• debhello_0.0-1_amd64.changes 是 Debian 二进制软件包的元数据文件。

debhello_0.0-1.debian.tar.xz 包含了 Debian 对上游源代码的修改，具体如下所示。
压缩文件 debhello_0.0-1.debian.tar.xz 的内容：

$ tar -tzf debhello-0.0.tar.gz
debhello-0.0/
debhello-0.0/src/
debhello-0.0/src/hello.c
debhello-0.0/Makefile
debhello-0.0/README.md
$ tar --xz -tf debhello_0.0-1.debian.tar.xz
debian/
debian/README.Debian
debian/changelog
debian/control
debian/copyright
debian/gbp.conf
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

debhello_0.0-1_amd64.deb 包含了将要安装至目标系统中的文件。
The debhello-dbgsym_0.0-1_amd64.deb contains the debug symbol files to be installed to the tar-

get system.
所有二进制包的包内容：

$ dpkg -c debhello-dbgsym_0.0-1_amd64.deb
drwxr-xr-x root/root/
drwxr-xr-x root/root/usr/
drwxr-xr-x root/root/usr/lib/
drwxr-xr-x root/root/usr/lib/debug/
drwxr-xr-x root/root/usr/lib/debug/.build-id/
drwxr-xr-x root/root/usr/lib/debug/.build-id/c4/
-rw-r--r-- root/root/usr/lib/debug/.build-id/c4/cec6427d45de48efc7f263...
drwxr-xr-x root/root/usr/share/
drwxr-xr-x root/root/usr/share/doc/
lrwxrwxrwx root/root/usr/share/doc/debhello-dbgsym -> debhello
$ dpkg -c debhello_0.0-1_amd64.deb
drwxr-xr-x root/root/
drwxr-xr-x root/root/usr/
drwxr-xr-x root/root/usr/bin/
-rwxr-xr-x root/root/usr/bin/hello
drwxr-xr-x root/root/usr/share/
drwxr-xr-x root/root/usr/share/doc/
drwxr-xr-x root/root/usr/share/doc/debhello/
-rw-r--r-- root/root/usr/share/doc/debhello/README.Debian
-rw-r--r-- root/root/usr/share/doc/debhello/changelog.Debian.gz
-rw-r--r-- root/root/usr/share/doc/debhello/copyright

生成的依赖列表会给出所有二进制软件包的依赖。
生成的所有二进制软件包的依赖列表（v=0.0）：

$ dpkg -f debhello-dbgsym_0.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 0.0-1)
$ dpkg -f debhello_0.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.34)

29

CHAPTER 5. 简单打包 5.9. STEP 3 (ALTERNATIVES): …

小心

在将软件包上传至 Debian 仓库之前，仍然有很多细节需要进行处理。

注意

如果跳过了对 debmake 命令自动生成的配置文件的手工调整步骤，所生成的二
进制软件包可能缺少有用的软件包描述信息，某些政策的要求也无法满足。这个
不正式的软件包对于 dpkg 命令来说可以正常处理，也许这样对您本地的部署来
说已经足够好了。

5.9 Step 3 (alternatives): Modification to the upstream source
The above example did not touch the upstream source to make the proper Debian package. An alter-
native approach as the maintainer is to modify files in the upstream source. For example, Makefile may
be modified to set the $(prefix) value to /usr.

注意

The above “第 5.7 节”using the debian/rules file is the better approach for pack-
aging for this example. But let’s continue on with this alternative approaches as
a leaning experience.

In the following, let’s consider 3 simple variants of this alternative approach to generate debian/patches/*
files representing modifications to the upstream source in the Debian source format “3.0 (quilt)”. These
substitute “第 5.7 节”in the above step-by-step example:

• “第 5.10 节”

• “第 5.11 节”

• “第 5.12 节”

Please note the debian/rules file used for these examples doesn’t have the override_dh_auto_install
target as follows:

debian/rules（备选的维护者版本）：

$ cd /path/to/debhello-0.0
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

30

CHAPTER 5. 简单打包 5.10. PATCH BY “DIFF -U”APPROACH

5.10 Patch by “diff -u”approach
Here, the patch file 000-prefix-usr.patch is created using the diff command.

Patch by diff -u

$ cp -a debhello-0.0 debhello-0.0.orig
$ vim debhello-0.0/Makefile
... hack, hack, hack, ...
$ diff -Nru debhello-0.0.orig debhello-0.0 >000-prefix-usr.patch
$ cat 000-prefix-usr.patch
diff -Nru debhello-0.0.orig/Makefile debhello-0.0/Makefile
--- debhello-0.0.orig/Makefile 2024-11-29 07:57:10.299591959 +0000
+++ debhello-0.0/Makefile 2024-11-29 07:57:10.391593434 +0000
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

$ rm -rf debhello-0.0
$ mv -f debhello-0.0.orig debhello-0.0

Please note that the upstream source tree is restored to the original state after generating a patch
file 000-prefix-usr.patch.

This 000-prefix-usr.patch is edited to be DEP-3 conforming and moved to the right location as below.
000-prefix-usr.patch (DEP-3):

$ echo '000-prefix-usr.patch' >debian/patches/series
$ vim ../000-prefix-usr.patch
... hack, hack, hack, ...
$ mv -f ../000-prefix-usr.patch debian/patches/000-prefix-usr.patch
$ cat debian/patches/000-prefix-usr.patch
From: Osamu Aoki <osamu@debian.org>
Description: set prefix=/usr patch
diff -Nru debhello-0.0.orig/Makefile debhello-0.0/Makefile
--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

注意

When generating the Debian source package by dpkg-source via dpkg-
buildpackage in the following step of “第 5.8 节”, the dpkg-source com-
mand assumes that no patch was applied to the upstream source, since the
.pc/applied-patches is missing.

5.11 Patch by dquilt approach
Here, the patch file 000-prefix-usr.patch is created using the dquilt command.

dquilt is a simple wrapper of the quilt program. The syntax and function of the dquilt command
is the same as the quilt(1) command, except for the fact that the generated patch is stored in the de-
bian/patches/ directory.

Patch by dquilt

31

https://dep-team.pages.debian.net/deps/dep3/

CHAPTER 5. 简单打包 5.11. PATCH BY DQUILT APPROACH

$ dquilt new 000-prefix-usr.patch
Patch debian/patches/000-prefix-usr.patch is now on top
$ dquilt add Makefile
File Makefile added to patch debian/patches/000-prefix-usr.patch
... hack, hack, hack, ...
$ head -1 Makefile
prefix = /usr
$ dquilt refresh
Refreshed patch debian/patches/000-prefix-usr.patch
$ dquilt header -e --dep3
... edit the DEP-3 patch header with editor
$ tree -a
.
+-- .pc
| +-- .quilt_patches
| +-- .quilt_series
| +-- .version
| +-- 000-prefix-usr.patch
| | +-- .timestamp
| | +-- Makefile
| +-- applied-patches
+-- Makefile
+-- README.md
+-- debian
| +-- README.Debian
| +-- README.source
| +-- changelog
| +-- clean
| +-- control
| +-- copyright
| +-- dirs
| +-- gbp.conf
| +-- install
| +-- links
| +-- patches
| | +-- 000-prefix-usr.patch
| | +-- series
| +-- rules
| +-- salsa-ci.yml
| +-- source
| | +-- format
| | +-- local-options.ex
| | +-- local-patch-header.ex
| +-- tests
| | +-- control
| +-- upstream
| | +-- metadata
| +-- watch
+-- src

+-- hello.c

9 directories, 29 files
$ cat debian/patches/series
000-prefix-usr.patch
$ cat debian/patches/000-prefix-usr.patch
Description: set prefix=/usr patch
Author: Osamu Aoki <osamu@debian.org>
Index: debhello-0.0/Makefile
===
--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@
-prefix = /usr/local

32

CHAPTER 5. 简单打包 5.12. PATCH BY “DPKG-SOURCE …

+prefix = /usr

all: src/hello

Here, Makefile in the upstream source tree doesn’t need to be restored to the original state for the
packaging.

注意

When generating the Debian source package by dpkg-source via dpkg-
buildpackage in the following step of “第 5.8 节”, the dpkg-source com-
mand assumes that patches were applied to the upstream source, since the
.pc/applied-patches exists.

The upstream source tree can be restored to the original state for the packaging.
The upstream source tree (restored):

$ dquilt pop -a
Removing patch debian/patches/000-prefix-usr.patch
Restoring Makefile

No patches applied
$ head -1 Makefile
prefix = /usr/local
$ tree -a .pc
.pc
+-- .quilt_patches
+-- .quilt_series
+-- .version

1 directory, 3 files

Here, Makefile is restored and the .pc/applied-patches is missing.

5.12 Patch by “dpkg-source --auto-commit”approach
Here, the patch file isn’t created in this step but the source files are setup to create debian/patches/*
files in the following step of “第 5.8 节”.

我们先来编辑上游源代码。
Modified Makefile

$ vim Makefile
... hack, hack, hack, ...
$ head -n1 Makefile
prefix = /usr

Let’s edit debian/source/local-options:
debian/source/local-options for auto-commit

$ mv debian/source/local-options.ex debian/source/local-options
$ vim debian/source/local-options
... hack, hack, hack, ...
$ cat debian/source/local-options
== Patch applied strategy (merge) ==
#
The source outside of debian/ directory is modified by maintainer and
different from the upstream one:
* Workflow using dpkg-source commit (commit all to VCS after dpkg-source ...
https://www.debian.org/doc/manuals/debmake-doc/ch04.en.html#dpkg-sour...
* Workflow described in dgit-maint-merge(7)
#

33

CHAPTER 5. 简单打包 5.12. PATCH BY “DPKG-SOURCE …

single-debian-patch
auto-commit

Let’s edit debian/source/local-patch-header:
debian/source/local-patch-header for auto-commit

$ mv debian/source/local-patch-header.ex debian/source/local-patch-header
$ vim debian/source/local-patch-header
... hack, hack, hack, ...
$ cat debian/source/local-patch-header
Description: debian-changes
Author: Osamu Aoki <osamu@debian.org>

Let’s remove debian/patches/* files and other unused template files.
移除未使用的模板文件

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree debian
debian
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- rules
+-- salsa-ci.yml
+-- source
| +-- format
| +-- local-options
| +-- local-patch-header
+-- tests
| +-- control
+-- upstream
| +-- metadata
+-- watch

4 directories, 13 files

There are no debian/patches/* files at the end of this step.

注意

When generating the Debian source package by dpkg-source via dpkg-
buildpackage in the following step of “第 5.8 节”, the dpkg-source command
uses options specified in debian/source/local-options to auto-commit modifica-
tion applied to the upstream source as patches/debian-changes.

Let’s inspect the Debian source package generated after the following “第 5.8 节”step and extracting
files from debhello-0.0.debian.tar.xz.

Inspect debhello-0.0.debian.tar.xz after debuild

$ tar --xz -xvf debhello_0.0-1.debian.tar.xz
debian/
debian/README.Debian
debian/changelog
debian/control
debian/copyright
debian/gbp.conf
debian/patches/
debian/patches/debian-changes
debian/patches/series

34

CHAPTER 5. 简单打包 5.12. PATCH BY “DPKG-SOURCE …

debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

Let’s check generated debian/patches/* files.
Inspect debian/patches/* after debuild

$ cat debian/patches/series
debian-changes
$ cat debian/patches/debian-changes
Description: debian-changes
Author: Osamu Aoki <osamu@debian.org>

--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

The Debian source package debhello-0.0.debian.tar.xz is confirmed to be generated properly with
debian/patches/* files for the Debian modification.

35

Chapter 6

打包工作的基础

Here, a broad overview is presented without using VCS operations for the basic rules of Debian pack-
aging focusing on the non-native Debian package in the “3.0 (quilt)”format.

注意

为简明起见，某些细节被有意跳过。请按需查阅对应命令的手册页，例如 dpkg-
source(1)、dpkg-buildpackage(1)、dpkg(1)、dpkg-deb(1)、deb(5)，等等。

Debian 源码包是一组用于构建 Debian 二进制软件包的输入文件，而非单个文件。
Debian 二进制软件包是一个特殊的档案文件，其中包含了一系列可安装的二进制数据及与它们相关

的信息。
单个 Debian 源码包可能根据 debian/control 文件定义的内容产生多个 Debian 二进制软件包。
The non-native Debian package in the Debian source format “3.0 (quilt)”is the most normal Debian

source package format.

注意

有许多封装脚本可用。合理使用它们可以帮助您理顺工作流程，但是请确保您能
理解它们内部的基本工作原理。

6.1 打包工作流

The Debian packaging workflow to create a Debian binary package involves generating several specif-
ically named files (see “第 6.3 节”) as defined in the “Debian Policy Manual”. This workflow can be
summarized in 10 steps with some over simplification as follows.

1. 下载上游源码压缩包（tarball）并命名为 package-version.tar.gz 文件。

2. 使上游提供的源码压缩包解压缩后的所有文件存储在 package-version/ 目录中。

3. 上游的源码压缩包被复制（或符号链接）至一个特定的文件名 packagename_version.orig.tar.gz。

• 分隔 package 和 version 的符号从 -（连字符）更改为 _（下划线）

• 文件扩展名添加了 .orig 部分。

4. Debian 软件包规范文件将被添加至上游源代码中，存放在 package-version/debian/ 目录下。

• debian/* 目录下的必需技术说明文件：

debian/rules 构建 Debian 软件包所需的可执行脚本（参见“第 6.5 节”）

36

CHAPTER 6. 打包工作的基础 6.1. 打包工作流

debian/control 软件包配置文件包含了源码包名称、源码构建依赖、二进制软件包名称、二
进制软件包依赖，等等。（参见“第 6.6 节”）

debian/changelog Debian 软件包历史文件，其中第一行定义了上游软件包版本号和 Debian
修订版本号（参见“第 6.7 节”）

debian/copyright 版权和许可证摘要信息（参看“第 6.8 节”）
• 在 debian/* 下的可选配置文件（参见“第 6.14 节”）：
• The debmake command invoked in the package-version/ directory may be used to provide

the initial template of these configuration files.
– 必备的配置文件总会生成，无论是否提供 -x0 选项。
– debmake 命令永远不会覆写任何已经存在的配置文件。

• These files must be manually edited to their perfection according to the “Debian Policy Manual”
and “Debian Developer’s Reference”.

5. The dpkg-buildpackage command (usually from its wrapper debuild or sbuild) is invoked in the
package-version/ directory to make the Debian source and binary packages by invoking the de-
bian/rules script.

• The current directory is set as: “CURDIR=/path/to/package-version/”
• Create the Debian source package in the Debian source format “3.0 (quilt)”using dpkg-

source(1)
– package_version.orig.tar.gz (copy or symlink of package-version.tar.gz)
– package_version-revision.debian.tar.xz (tarball of debian/ found in package-version/)
– package_version-revision.dsc

• Build the source using “debian/rules build”into $(DESTDIR)
– “DESTDIR=debian/binarypackage/”for single binary package 1
– “DESTDIR=debian/tmp/”for multi binary package

• 使用 dpkg-deb(1)、dpkg-genbuildinfo(1) 和 dpkg-genchanges(1) 创建 Debian 二进制软件
包。

– binarypackage_version-revision_arch.deb
– ……（可能有多个 Debian 二进制包文件。）
– package_version-revision_arch.changes
– package_version-revision_arch.buildinfo

6. 使用 lintian 命令检查 Debian 软件包的质量。（推荐）

• Follow the rejection guidelines from ftp-master.
– “软件包被拒绝常见问题解答（REJECT-FAQ）”
– “新软件包（NEW）检查清单”
– “Lintian 自动拒绝（autoreject）”（“lintian 标签列表”）

7. 通过手工安装和运行软件包里的程序，来测试生成的 Debian 二进制软件包的可用性。

8. After confirming the goodness, prepare files for the normal source-only upload to the Debian
archive.

9. Sign the Debian package file with the debsign command using your private GPG key.

• Use “debsign package_version-revision_source.changes”(normal source-only upload situ-
ation)

• Use “debsign package_version-revision_arch.changes”(exceptional binary upload situation
such as NEW uploads, and security uploads) files for the binary Debian package upload.

10. Upload the set of the Debian package files with the dput command to the Debian archive.

• Use “dput package_version-revision_source.changes”(source-only upload)

1This is the default up to debhelper v13. At debhelper v14, it warns the default change. After debhelper v15, it will change
the default to DESTDIR=debian/tmp/ .

37

https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/manuals/developers-reference/
https://ftp-master.debian.org/
https://ftp-master.debian.org/REJECT-FAQ.html
https://ftp-master.debian.org/NEW-checklist.html
https://ftp-master.debian.org/#lintianrejects
https://ftp-master.debian.org/static/lintian.tags

CHAPTER 6. 打包工作的基础 6.2. DEBHELPER PACKAGE

• Use “dput package_version-revision_arch.changes”(binary upload)

Test building and confirming of the binary package goodness as above is the moral obligation as
a diligent Debian developer but there is no physical barrier for people to skip such operations at this
moment for the source-only upload.

这里，请将文件名中对应的部分使用下面的方式进行替换：

• 将 package 部分替换为 Debian 源码包名称

• 将 binarypackage 部分替换为 Debian 二进制软件包名称

• 将 version 部分替换为上游版本号

• 将 revision 部分替换为 Debian 修订号

• the arch part with the package architecture (e.g., amd64)

参见“Source-only uploads”。

提示

有很多种通过实践摸索而得到的补丁管理方法和版本控制系统的使用策略与技
巧。您没有必要将它们全部用上。

提示

There is very extensive documentation in “Chapter 6. Best Packaging Practices”
in the “Debian Developer’s Reference”. Please read it.

6.2 debhelper package
Although a Debian package can be made by writing a debian/rules script without using the debhelper
package, it is impractical to do so. There are too many modern “Debian Policy”required features to be
addressed, such as application of the proper file permissions, use of the proper architecture dependent
library installation path, insertion of the installation hook scripts, generation of the debug symbol package,
generation of package dependency information, generation of the package information files, application
of the proper timestamp for reproducible build, etc.

Debhelper package provides a set of useful scripts in order to simplify Debian’s packaging workflow
and reduce the burden of package maintainers. When properly used, they will help packagers handle
and implement “Debian Policy”required features automatically.

现代化的 Debian 打包工作流可以组织成一个简单的模块化工作流，如下所示：

• 使用 dh 命令以自动调用来自 debhelper 软件包的许多实用脚本，以及

• 使用 debian/ 目录下的声明式配置文件配置它们的行为。

您几乎总是应当将 debhelper 列为您的软件包的构建依赖之一。本文档在接下来的内容中也假设您
正在使用一个版本足够新的 debhelper 协助进行打包工作。

注意

For debhelper “compat >= 9”, the dh command exports compiler flags (CFLAGS,
CXXFLAGS, FFLAGS, CPPFLAGS and LDFLAGS) with values as returned
by dpkg-buildflags if they are not set previously. (The dh command calls
set_buildflags defined in the Debian::Debhelper::Dh_Lib module.)

38

https://wiki.debian.org/SourceOnlyUpload
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/

CHAPTER 6. 打包工作的基础 6.3. 软件包名称和版本

注意

debhelper(1) changes its behavior with time. Please make sure to read
debhelper-compat-upgrade-checklist(7) to understand the situation.

6.3 软件包名称和版本

如果所获取上游源代码的形式为 hello-0.9.12.tar.gz，您可以将 hello 作为上游源代码名称，并将 0.9.12
作为上游版本号。

组成 Debian 软件包名称的字符选取存在一定的限制。最明显的限制应当是软件包名称中禁止出现大
写字母。这里给出正则表达式形式的规则总结：

• Upstream package name (-p): [-+.a-z0-9]{2,}

• Binary package name (-b): [-+.a-z0-9]{2,}

• Upstream version (-u): [0-9][-+.:~a-z0-9A-Z]*

• Debian revision (-r): [0-9][+.~a-z0-9A-Z]*

See the exact definition in “Chapter 5 - Control files and their fields”in the “Debian Policy Manual”.
您必须为 Debian 打包工作适当地调整软件包名称和上游版本号。
为了能有效地使用一些流行的工具（如 aptitude）管理软件包名称和版本信息，最好能将软件包名称

保持在 30 字符以下；版本号和修订号加起来最好能不超过 14 个字符。2
为了避免命名冲突，对用户可见的二进制软件包名称不应选择任何常用的单词。
如果上游没有使用像 2.30.32 这样正常的版本编号方案，而是使用了诸如 11Apr29 这样包含日期、某

些代号或者一个版本控制系统散列值等字符串作为版本号的一部分的话，请在上游版本号中将这些部分
移除。这些信息可以稍后在 debian/changelog 文件中进行记录。如果您需要为软件设计一个版本字符
串，可以使用 YYYYMMDD 格式，如 20110429 的字符串作为上游版本号。这样能保证 dpkg 命令在升
级时能正确地确定版本的先后关系。如果您想要确保万一上游在未来重新采纳正常版本编号方案，例如
0.1 时能够做到顺畅地迁移，可以另行使用 0~YYMMDD 的格式，如 0~110429 作为上游版本号。

版本字符串可以按如下的方式使用 dpkg 命令进行比较。

$ dpkg --compare-versions ver1 op ver2

版本比较的规则可以归纳如下：

• 字符串按照起始到末尾的顺序进行比较。

• 字符比数字大。

• 数字按照整数顺序进行比较。

• 字符按照 ASCII 编码的顺序进行比较。

对于某些字符，如句点（.）、加号（+）和波浪号（~），有如下的特殊规则。

0.0 < 0.5 < 0.10 < 0.99 < 1 < 1.0~rc1 < 1.0 < 1.0+b1 < 1.0+nmu1 < 1.1 < 2.0

有一个稍需注意的情况，即当上游将 hello-0.9.12-ReleaseCandidate-99.tar.gz 这样的版本当作预
发布版本，而将 hello-0.9.12.tar.gz 作为正式版本时。为了确保 Debian 软件包升级能够顺畅进行，您应
当修改版本号命名，如将上游源代码压缩包重命名为 hello-0.9.12~rc99.tar.gz。

2对九成以上的软件包来说，软件包名称都不会超过 24 个字符；上游版本号通常不超过 10 个字符，而 Debian 修订版本号也
通常不超过 3 个字符。

39

https://www.debian.org/doc/debian-policy/#document-ch-controlfields

CHAPTER 6. 打包工作的基础 6.4. 原生 DEBIAN 软件包

6.4 原生 Debian 软件包

The non-native Debian package in the Debian source format “3.0 (quilt)”is the most normal Debian
source package format. The debian/source/format file should have “3.0 (quilt)”in it as described in
dpkg-source(1). The above workflow and the following packaging examples always use this format.

而原生 Debian 软件包是较罕见的一种 Debian 软件包格式。它通常只用于打包仅对 Debian 项目有价
值、有意义的软件。因此，该格式的使用通常不被提倡。

小心

A native Debian package is often accidentally built when its upstream tarball is not
accessible from the dpkg-buildpackage command with its correct name pack-
age_version.orig.tar.gz . This is a typical newbie mistake caused by making a
symlink name with “-”instead of the correct one with “_”.

原生 Debian 软件包不对 上游代码和 Debian 的修改进行区分，仅包含以下内容：

• package_version.tar.gz (copy or symlink of package-version.tar.gz with debian/* files.)

• package_version.dsc

If you need to create a native Debian package, create it in the Debian source format “3.0 (native)”
using dpkg-source(1).

提示

There is no need to create the tarball in advance if the native Debian package
format is used. The debian/source/format file should have “3.0 (native)”in it as
described in dpkg-source(1) and The debian/source/format file should have
the version without the Debian revision (1.0 instead of 1.0-1). Then, the tarball
containing is generated when “dpkg-source -b”is invoked in the source tree.

6.5 debian/rules 文件

The debian/rules file is the executable script which re-targets the upstream build system to install files
in the $(DESTDIR) and creates the archive file of the generated files as the deb file. The deb file is used
for the binary distribution and installed to the system using the dpkg command.

The Debian policy compliant debian/rules file supporting all the required targets can be written as
simple as 3:

简单的 debian/rules：

#!/usr/bin/make -f
#export DH_VERBOSE = 1

%:
dh $@

这里的 dh 命令的作用是作为一个序列化工具，在合适的时候调用所有所需的“dh 目标”命令。⁴

• dh clean：清理源码树中的文件。

• dh build：在源码树中进行构建

• dh build-arch：在源码树中构建架构相关的软件包

• dh build-indep：在源代码中构建架构无关的软件包

3debmake 命令会产生稍微复杂一些的 debian/rules 文件。虽然如此，其核心结构没有什么变化。
⁴这个简化形式在 debhelper 软件包第七版或更新的版本中可用。本指南内容假设您在使用 debhelper 第 13 版或更新的版本。

40

CHAPTER 6. 打包工作的基础 6.6. DEBIAN/CONTROL 文件

• dh install：将二进制文件安装至 $(DESTDIR)

• dh install-arch：为架构相关的软件包将二进制文件安装至 $(DESTDIR) 中

• dh install-indep：为架构无关的软件包将二进制文件安装进入 $(DESTDIR) 中

• dh binary：产生 deb 文件

• dh binary-arch：为架构相关的软件包产生 deb 文件

• dh binary-indep：为架构无关的软件包产生 deb 文件

Here, $(DESTDIR) path depends on the build type.

• “DESTDIR=debian/binarypackage/”for single binary package ⁵

• “DESTDIR=debian/tmp/”for multi binary package

See “第 9.2 节”and “第 9.3 节”for customization.

提示

Setting “export DH_VERBOSE = 1”outputs every command that modifies files
on the build system. Also it enables verbose build logs for some build systems.

6.6 debian/control 文件

The debian/control file consists of blocks of metadata separated by blank lines. Each block of metadata
defines the following, in this order:

• Debian 源码包的元信息数据

• Debian 二进制软件包的元信息

See “Chapter 5 - Control files and their fields”of the ”Debian Policy Manual” for the definition of each
metadata field.

注意

The debmake command sets the debian/control file with “Build-Depends:
debhelper-compat (= 13)”to set the debhelper compatibility level.

提示

If an existing package has a debhelper compatibility level lower than 13, it’s
probably time to update its packaging.

⁵This is the default up to debhelper v13. At debhelper v14, it warns the default change. After debhelper v15, it will change
the default to DESTDIR=debian/tmp/ .

41

https://www.debian.org/doc/debian-policy/ch-controlfields.html

CHAPTER 6. 打包工作的基础 6.7. DEBIAN/CHANGELOG FILE

6.7 debian/changelog file
The debian/changelog file records the Debian package history.

• Edit this file using the debchange command (alias dch).

• The first line defines the upstream package version and the Debian revision.

• 以特定、正式而简洁的风格记录修改内容。

– If Debian maintainer modification fixes reported bugs, add “Closes: #<bug_number>”to close
those bugs.

• Even if you’re uploading your package yourself, you must document all non-trivial user-visible
changes, such as:

– 安全相关的漏洞修复。

– 用户界面变动。

• If you’re asking a sponsor to upload it, document changes more comprehensively, including all
packaging-related ones, to help with package review.

– The sponsor shouldn’t have to guess your reasoning behind package changes.
– Remember that the sponsor’s time is valuable.

After finishing your packaging and verifying its quality, execute the ”dch -r” command and save the
finalized debian/changelog file with the suite normally set to unstable. ⁶ If you’re packaging for back-
ports, security updates, LTS, etc., use the appropriate distribution names instead.

The debmake command creates the initial template file with the upstream package version and the
Debian revision. The distribution is set to UNRELEASED to prevent accidental uploads to the Debian
archive.

提示

The date string used in the debian/changelog file can be manually generated
by the “LC_ALL=C date -R”command.

提示

Use a debian/changelog entry with a version string like 1.0.1-1~rc1 when ex-
perimenting. Later, consolidate such changelog entries into a single entry for
the official package.

The debian/changelog file is installed in the /usr/share/doc/binarypackage directory as changelog.Debian.gz
by the dh_installchangelogs command.

上游的变更日志则会安装至 /usr/share/doc/binarypackage 目录中，文件名为 changelog.gz。
上游的变更日志是由 dh_installchangelogs 程序自动进行搜索和处理的；它会使用大小写不敏感

的搜索方式寻找上游代码中特定名称的文件，如 changelog、changes、changelog.txt、changes.txt、
history、history.txt 或 changelog.md。除了根目录，程序还会在 doc/ 目录和 docs/ 目录内进行搜索。

6.8 debian/copyright 文件

Debian takes copyright and license matters very seriously. The ”Debian Policy Manual” requires a sum-
mary of these in the debian/copyright file of the package.

⁶If you’re using the vim editor, make sure to save this with the ”:wq” command.

42

CHAPTER 6. 打包工作的基础 6.9. DEBIAN/PATCHES/* 文件

• “12.5. Copyright information”

• “2.3. Copyright considerations”

• “License information”

The debmake command creates the initial debian/copyright template file.

• Double-check copyright information using the licensecheck(1) command.

• Format it as a “machine-readable debian/copyright file (DEP-5)”.

Unless specifically requested to be pedantic with the -P option, the debmake command skips report-
ing auto-generated files with permissive licenses for practicality.

小心

The debian/copyright file should be sorted with generic file patterns at the top
of the list. See “第 16.6 节”.

注意

如果您发现了这个许可证检查工具存在一些问题，请向 debmake 软件包提交缺
陷报告并提供包含出现问题的许可证和版权信息在内的相关文本内容。

6.9 debian/patches/* 文件

As demonstrated in “第 5.9 节”, the debian/patches/ directory holds

• patch-file-name.patch files providing -p1 patches and

• the series file which defines how these patches are applied.

See how these files are used in:

• “第 13.6 节”to build the Debian source package

• “第 13.7 节”to extract source files from the Debian source package

注意

Header texts of these patches should conform to “DEP-3”.

注意

If you want to use VCS tools such as git, gbp and dgit to create and manage
these patches after learning basics here, please refer to later in “第 11 章”.

43

https://www.debian.org/doc/debian-policy/ch-docs.html#s-copyrightfile
https://www.debian.org/doc/debian-policy/ch-archive.html#s-pkgcopyright
https://www.debian.org/legal/licenses/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://dep-team.pages.debian.net/deps/dep3/

CHAPTER 6. 打包工作的基础 6.10. DEBIAN/SOURCE/INCLUDE-BINARIES …

6.10 debian/source/include-binaries 文件

The “dpkg-source --commit”command functions like dquilt but has one advantage over the dquilt
command. While the dquilt command can’t handle modified binary files, the “dpkg-source --commit”
command detects modified binary files and lists them in the debian/source/include-binaries file to in-
clude them in the Debian tarball as a part of the Debian source package.

6.11 debian/watch 文件

The uscan(1) command downloads the latest upstream version using the debian/watch file. E.g.:
基本的 debian/watch 文件：

version=4
https://ftp.gnu.org/gnu/hello/ @PACKAGE@@ANY_VERSION@@ARCHIVE_EXT@

The uscan command may verify the authenticity of the upstream tarball with optional configuration
(see “第 6.12 节”).

See uscan(1), “第 9.4 节”, “第 8.1 节”, and “第 11.10 节”for more.

6.12 debian/upstream/signing-key.asc file
Some packages are signed by a GPG key and their authenticity can be verified using their public GPG
key.

For example, “GNU hello”can be downloaded via HTTP from https://ftp.gnu.org/gnu/hello/ . There
are sets of files:

• hello-version.tar.gz（上游源代码）

• hello-version.tar.gz.sig（分离的签名）nature)

我们现在来选择最新的版本套装。
下载上游提供的的源码压缩包及其签名。

$ wget https://ftp.gnu.org/gnu/hello/hello-2.9.tar.gz
...
$ wget https://ftp.gnu.org/gnu/hello/hello-2.9.tar.gz.sig
...
$ gpg --verify hello-2.9.tar.gz.sig
gpg: Signature made Thu 10 Oct 2013 08:49:23 AM JST using DSA key ID 80EE4A00
gpg: Can't check signature: public key not found

If you know the public GPG key of the upstream maintainer from the mailing list, use it as the
debian/upstream/signing-key.asc file. Otherwise, use the hkp keyserver and check it via your web
of trust.

Download public GPG key for the upstream

$ gpg --keyserver hkp://keys.gnupg.net --recv-key 80EE4A00
gpg: requesting key 80EE4A00 from hkp server keys.gnupg.net
gpg: key 80EE4A00: public key "Reuben Thomas <rrt@sc3d.org>" imported
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: imported: 1
$ gpg --verify hello-2.9.tar.gz.sig
gpg: Signature made Thu 10 Oct 2013 08:49:23 AM JST using DSA key ID 80EE4A00
gpg: Good signature from "Reuben Thomas <rrt@sc3d.org>"
...

Primary key fingerprint: 9297 8852 A62F A5E2 85B2 A174 6808 9F73 80EE 4A00

44

https://www.gnu.org/software/hello/
https://ftp.gnu.org/gnu/hello/
https://en.wikipedia.org/wiki/Web_of_trust
https://en.wikipedia.org/wiki/Web_of_trust

CHAPTER 6. 打包工作的基础 6.13. DEBIAN/SALSA-CI.YML 文件

提示

If your network environment blocks access to the HKP port 11371, use
“hkp://keyserver.ubuntu.com:80”instead.

在确认密钥身份 80EE4A00 值得信任之后，应当下载其公钥并将其保存在 debian/upstream/signing-
key.asc 文件中。

Set public GPG key to debian/upstream/signing-key.asc
$ gpg --armor --export 80EE4A00 >debian/upstream/signing-key.asc

With the above debian/upstream/signing-key.asc file and the following debian/watch file, the us-
can command can verify the authenticity of the upstream tarball after its download. E.g.:

Improved debian/watch file with GPG support:
version=4
opts="pgpsigurlmangle=s/$/.sig/" \
https://ftp.gnu.org/gnu/hello/ @PACKAGE@@ANY_VERSION@@ARCHIVE_EXT@

6.13 debian/salsa-ci.yml 文件

Install Salsa CI configuration file. See “第 11.3 节”.

6.14 其它 debian/* 文件

另外也可以添加一些可选的配置文件并放入 debian/ 目录。它们大多用于控制由 debhelper 软件包提供
的 dh_* 命令的行为，但也有一些文件会影响 dpkg-source、lintian 和 gbp 这些命令。

提示

Even an upstream source without its build system can be packaged just by using
these files. See “第 14.2 节”as an example.

The alphabetical list of notable optional debian/binarypackage.* configuration files listed below pro-
vides very powerful means to set the installation path of files. Please note:

• The “-x[01234]”superscript notation that appears in the following list indicates the minimum value
for the debmake -x option that generates the associated template file. See “第 16.9 节”or deb-
make(1) for details.

• For a single binary package, the “binarypackage.”part of the filename in the list may be removed.

• For a multi binary package, a configuration file missing the “binarypackage”part of the filename is
applied to the first binary package listed in the debian/control.

• When there are many binary packages, their configurations can be specified independently by pre-
fixing their name to their configuration filenames such as “package-1.install”, “package-2.install”,
etc.

• debmake 可能没有自动生成某些模板配置文件。如遇到这种情况，您可以使用文本编辑器手动创
建缺失的文件。

• Some configuration template files generated by the debmake command with an extra .ex suffix
need to be activated by removing that suffix.

45

https://salsa.debian.org/salsa-ci-team/pipeline

CHAPTER 6. 打包工作的基础 6.14. 其它 DEBIAN/* 文件

• 您应当删除 .ex 命令生成但对您无用的配置模板文件。

• 请按需复制配置模板文件以匹配其对应的二进制包名称以及您的需求。

binarypackage.bug-control -x3 将安装至 binarypackage 软件包的 usr/share/bug/binarypackage/control
位置。另请参考“第 9.11 节”。

binarypackage.bug-presubj -x3 将安装至 binarypackage 软件包的 usr/share/bug/binarypackage/presubj
位置。另请参考“第 9.11 节”。

binarypackage.bug-script -x3 将安装至 binarypackage 软件包的 usr/share/bug/binarypackage
or usr/share/bug/binarypackage/script 位置。另请参考“第 9.11 节”。

binarypackage.bash-completion -x3 List bash completion scripts to be installed.
The bash-completion package is required for both build and user environments.
另请参考 dh_bash-completion(1)。

clean -x2 列出（构建前）未被 dh_auto_clean 命令清理，且需要手工清理的文件。
另请参考 dh_auto_clean(1) 和 dh_clean(1)。

compat -x4 Set the debhelper compatibility level. (deprecated)
Use “Build-Depends: debhelper-compat (= 13)”in debian/control to specify the compati-
bility level and remove debian/compat.
See “COMPATIBILITY LEVELS”in debhelper(7).

binarypackage.conffiles -x3 This optional file is installed into the DEBIAN directory within the
binary package while supplementing it with all the conffiles auto-detected by debhelper.
This file is primarily useful for using ”special” entries such as the remove-on-upgrade feature
from dpkg(1).
如果您正要打包的程序要求每个用户都对 /etc 目录下的配置文件进行修改，可以采取两种常
见办法使其不作为 conffile 配置文件出现，避免 dpkg 命令处理软件包时给出不必要的处理选
项。

– 在 /etc 目录下创建一个符号链接，指向 /var 目录下的某些文件；实际存在的文件则使用
维护者脚本（maintainer script）予以创建。

– 使用维护者脚本（maintainer script）在 /etc 目录下创建并维护配置所需的文件。
另请参考 dh_installdeb(1)。

binarypackage.config -x3 这是 debconf config 脚本，用来在配置软件包时向用户询问任何必需
的问题。另请参见“第 10.22 节”。

binarypackage.cron.hourly -x3 安装至 binarypackage 包内的 etc/cron/hourly/binarypackage 文
件。
另请参见 dh_installcron(1) 和 cron(8)。

binarypackage.cron.daily -x3 安装至 binarypackage 包内的 etc/cron/daily/binarypackage 文件。
另请参见 dh_installcron(1) 和 cron(8)。

binarypackage.cron.weekly -x3 安装至 binarypackage 包内的 etc/cron/weekly/binarypackage
文件。
另请参见 dh_installcron(1) 和 cron(8)。

binarypackage.cron.monthly -x3 Installed into the *etc/cron/monthly/*binarypackage file in bina-
rypackage.
另请参见 dh_installcron(1) 和 cron(8)。

binarypackage.cron.d -x3 安装至 binarypackage 包内的 etc/cron.d/binarypackage 文件。
参见 dh_installcron(1)、cron(8) 和 crontab(5)。

binarypackage.default -x3 若该文件存在，它将被安装至 binarypackage 包中的 etc/default/binarypackage
位置。
参见 dh_installinit(1)。

binarypackage.dirs -x1 列出 binarypackage 包中要创建的目录。
参见 dh_installdirs(1)。
通常情况下您并不需要这么做，因为所有的 dh_install* 命令都会自动创建所需的目录。请仅
在遇到问题时考虑使用这一工具。

46

CHAPTER 6. 打包工作的基础 6.14. 其它 DEBIAN/* 文件

binarypackage.doc-base -x1 作为 binarypackage 包中的 doc-base 控制文件进行安装。
See dh_installdocs(1) and “Debian doc-base Manual (doc-base.html)”provided by the doc-
base package.

binarypackage.docs -x1 列出要安装在 binarypackage 包中的文档文件。
参见 dh_installdocs(1)。

binarypackage.emacsen-compat -x3 安装至 binarypackage 包中的 usr/lib/emacsen-common/packages/compat/binarypackage
文件。
参见 dh_installemacsen(1)。

binarypackage.emacsen-install -x3 安装至 binarypackage 包中的 usr/lib/emacsen-common/packages/install/binarypackage
文件。
参见 dh_installemacsen(1)。

binarypackage.emacsen-remove -x3 安装至 binarypackage 包中的 usr/lib/emacsen-common/packages/remove/binarypackage
文件。
参见 dh_installemacsen(1)。

binarypackage.emacsen-startup -x3 安装至 binarypackage 包中的 usr/lib/emacsen-common/packages/startup/binarypackage
文件。
参见 dh_installemacsen(1)。

binarypackage.examples -x1 列出要安装至 binarypackage 包中 usr/share/doc/binarypackage/examples/
位置下的示例文件或目录。
参见 dh_installexamples(1)。

gbp.conf -x1 如果该文件存在，它将作为 gbp 命令的配置文件发挥作用。
参见 gbp.conf(5)、gbp(1) 和 git-buildpackage(1)。

binarypackage.info -x1 列出要安装至 binarypackage 包中的 info 文件。
参见 dh_installinfo(1)。

binarypackage.init -x4 Installed into etc/init.d/binarypackage in binarypackage. (deprecated)
参见 dh_installinit(1)。

binarypackage.install -x1 列出未被 dh_auto_install 命令安装的其它应当安装的文件。
参见 dh_install(1) 和 dh_auto_install(1)。

binarypackage.links -x1 列出要生成符号链接的源文件和目标文件对。每一对链接均应在单独的
一行中列出，源文件和目标文件之间使用空白字符分隔。
参见 dh_link(1)。

binarypackage.lintian-overrides -x3 安装至软件包构建目录的 usr/share/lintian/overrides/binarypackage
位置。该文件用于消除 lintian 错误生成的诊断信息。
参见 dh_lintian(1)、lintian(1) 和“Lintian 用户手册”。

binarypackage.maintscript -x2 If this optional file exists, debhelper uses this as the template to
generate DEBIAN/binarypackage.{pre,post}{inst,rm} files within the binary package while
adding “-- ”$@””to the dpkg-maintscript-helper(1) command.
See dh_installdeb(1) and “Chapter 6 - Package maintainer scripts and installation procedure”
in the “Debian Policy Manual”.

manpage.* -x3 这些文件是 debmake 命令生成的 man 手册页模板文件。请将其重命名为合适的文
件名并更新其内容。
Debian Policy requires that each program, utility, and function should have an associated
manual page included in the same package. Manual pages are written in nroff(1). If you are
new to making a manpage, use manpage.asciidoc or manpage.1 as the starting point.

binarypackage.manpages -x1 列出要安装的 man 手册页。
参见 dh_installman(1)。

binarypackage.menu （已过时，不再安装） tech-ctte #741573 decided “Debian should use .desk-
top files as appropriate”.
安装至 binarypackage 包中的 usr/share/menu/binarypackage Debian 菜单文件。
参见 menufile(5) 以了解其格式。另请参见 dh_installmenu(1)。

47

file:///usr/share/doc/doc-base/doc-base.html/index.html
https://lintian.debian.org/manual/index.html
https://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
https://bugs.debian.org/741573

CHAPTER 6. 打包工作的基础 6.14. 其它 DEBIAN/* 文件

NEWS -x3 安装至 usr/share/doc/binarypackage/NEWS.Debian 文件。
参见 dh_installchangelogs(1)。

patches/* 这是 -p1 补丁文件的集合，它们将在使用源代码构建之前应用在上游源码上。
debmake 默认不会生成补丁文件。
参见 dpkg-source(1)、“第 4.4 节”和“第 5.9 节”。

patches/series -x1 patches/* 补丁文件的应用顺序。

binarypackage.preinst -x2, binarypackage.postinst -x2, binarypackage.prerm -x2, binarypackage.postrm -x2

If these optional files exist, the corresponding files are installed into the DEBIAN directory
within the binary package after enriched by debhelper. Otherwise, these files in the DEBIAN
directory within the binary package is generated by debhelper.
Whenever possible, simpler binarypackage.maintscript should be used instead.
See dh_installdeb(1) and “Chapter 6 - Package maintainer scripts and installation procedure”
in the “Debian Policy Manual”.
See also debconf-devel(7) and “3.9.1 Prompting in maintainer scripts”in the “Debian Policy
Manual”.

README.Debian -x1 安装至 debian/control 文件列出的第一个二进制软件包中的 usr/share/doc/binarypackage/README.Debian
位置。
该文件提供了针对该 Debian 软件包的信息。
参见 dh_installdocs(1)。

README.source -x1 Installed into the first binary package listed in the debian/control file as
usr/share/doc/binarypackage/README.source.
If running “dpkg-source -x”on a source package doesn’t produce the source of the package,
ready for editing, and allow one to make changes and run dpkg-buildpackage to produce a
modified package without taking any additional steps, creating this file is recommended.
See “Debian policy manual section 4.14”.

binarypackage.service -x3 如果该文件存在，它将被安装到 binarypackage 包下面的 lib/systemd/system/binarypackage.service
位置。
参见 dh_systemd_enable(1)、dh_systemd_start(1) 和 dh_installinit(1)。

source/format -x1 Debian 软件包格式。

– Use “3.0 (quilt)”to make this non-native package (recommended)
– Use “3.0 (native)”to make this native package

See “SOURCE PACKAGE FORMATS”in dpkg-source(1).
source/lintian-overrides -x3 These file is not installed, but are scanned by the lintian command

to provide overrides for the source package.
另请参考 dh_lintian(1) 和 lintian(1)。

source/local-options -x1 dpkg-source 命令使用此内容作为它的选项，比较重要的选项有：

– unapply-patches
– abort-on-upstream-changes
– auto-commit
– single-debian-patch

该文件不会包含在生成的源码包中，仅对维护者在版本控制系统中维护软件包有意义。
See “FILE FORMATS”in dpkg-source(1).

source/local-patch-header -x1 自由格式的文本，将被包含在自动生成补丁的顶部。
该文件不会包含在生成的源码包中，仅对维护者在版本控制系统中维护软件包有意义。
See “FILE FORMATS”in dpkg-source(1).

source/options -x3 Use source/local-options instead to avoid issues with NMUs. See “FILE
FORMATS”in dpkg-source(1).

source/patch-header -x4 Use source/local-patch-header instead to avoid issues with NMUs.
See “FILE FORMATS”in dpkg-source(1).

48

https://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
https://www.debian.org/doc/debian-policy/ch-binary.html#prompting-in-maintainer-scripts
https://www.debian.org/doc/debian-policy/ch-source.html#source-package-handling-debian-readme-source

CHAPTER 6. 打包工作的基础 6.14. 其它 DEBIAN/* 文件

binarypackage.symbols -x1 这些符号文件如果存在，将交由 dpkg-gensymbols 命令进行处理
和安装。
参见 dh_makeshlibs(1) 和“第 10.16 节”。

binarypackage.templates -x3 这是 debconf 模板文件，用于在安装过程中向用户询问必需的问
题以正确配置软件包。请参阅“第 10.22 节”。

tests/control -x1 This is the RFC822-style test meta data file defined in DEP-8. See autopkgtest(1)
and “第 10.4 节”.

TODO -x3 安装至 debian/control 文件列出的第一个二进制包中的 usr/share/doc/binarypackage/TODO.Debian
文件。
参见 dh_installdocs(1)。

binarypackage.tmpfile -x3 如果该文件存在，它将被安装至 binarypackage 包中的 usr/lib/tmpfiles.d/binarypackage.conf
文件。
参见 dh_systemd_enable(1)、dh_systemd_start(1) 和 dh_installinit(1)。

binarypackage.upstart -x4 If this exists, it is installed into etc/init/package.conf in the package
build directory. (deprecated)
参见 dh_installinit(1)。

upstream/metadata -x1 Per-package machine-readable metadata about upstream (DEP-12). See
“Upstream MEtadata GAthered with YAml (UMEGAYA)”.

49

https://dep-team.pages.debian.net/deps/dep8/
https://dep-team.pages.debian.net/deps/dep12/
https://wiki.debian.org/UpstreamMetadata

Chapter 7

Quality of packaging

The quality of Debian packaging can be improved by using testing tools.

• lintian(1)

• piuparts(1)

If you follow “第 4 章”, these are automatically executed. You are expected to fix all warnings.

7.1 Reformat debian/* files with wrap-and-sort
It is good idea to reformat debian/* files consistently using the wrap-and-sort(1) command in devscripts
package.

Reformat debian/* files

$ wrap-and-sort -vast

7.2 Validate debian/* files with debputy
The new debputy tool 1 includes subcommands to validate (and fix) most files in debian/*.

Check correctness of files in debian/*

$ debputy lint --spellcheck

Format debian/control and debian/tests/control files

$ debputy reformat --style black

Using the “debputy reformat”command obsoletes using “wrap-and-sort -vast”.
The debputy tool also includes a language server. You can set up to get real-time feedback while

editing debian/* files with any modern editor supporting the Language Server Protocol.

1The main purpose of the debputy tool is to offer a new Debian package build paradigm. This new paradigm is beyond the
scope of this tutorial.

50

https://manpages.debian.org/unstable/dh-debputy/debputy.1.en.html
https://en.wikipedia.org/wiki/Language_Server_Protocol

Chapter 8

Sanitization of the source

There are a few cases that require sanitizing the source to prevent contamination of the generated Debian
source package.

• Non-https://www.debian.org/social_contract.html#guidelines[DFSG] compliant content in the up-
stream source.

– Debian takes software freedom seriously and adheres to the DFSG.

• Extraneous auto-generated content in the upstream source.

– Debian packages should rebuild these under the latest system.

• Extraneous VCS content in the upstream source.

– The -i and -I options set in “第 4.5 节”for the dpkg-source(1) command should avoid these.

* The -i option is intended for non-native Debian packages.

* The -I option is intended for native Debian packages.

There are several methods to avoid including undesirable content.

8.1 Fix with Files-Excluded
This method is suitable for avoiding non-https://www.debian.org/social_contract.html#guidelines[DFSG]
compliant content in the upstream source tarball.

• 在 debian/copyright 文件中的 Files-Excluded 一节中列出需要移除的文件。

• 在 debian/watch 文件中列出下载上游源码包（tarball）所使用的 URL。

• 运行 uscan 命令以下载新的上游源码包（tarball）。

– Alternatively, use the “gbp import-orig --uscan --pristine-tar”command.

• mk-origtargz invoked from uscan removes excluded files from the upstream tarball and repack it
as a clean tarball.

• 最后得到 tarball 的版本编号会附加一个额外的后缀 +dfsg。

See “COPYRIGHT FILE EXAMPLES”in mk-origtargz(1).

8.2 Fix with “debian/rules clean”

This method is suitable for avoiding auto-generated files by removing them in the ”debian/rules clean”
target.

51

https://www.debian.org/social_contract.html#guidelines

CHAPTER 8. SANITIZATION OF THE SOURCE 8.3. FIX WITH EXTEND-DIFF-IGNORE

注意

The ”debian/rules clean” target is called before the ”dpkg-source --build” com-
mand by the dpkg-buildpackage command. The ”dpkg-source --build” com-
mand ignores removed files.

8.3 Fix with extend-diff-ignore
This is for the non-native Debian package.

The problem of extraneous diffs can be fixed by ignoring changes made to specific parts of the source
tree. This is done by adding the ”extend-diff-ignore=… ” line in the debian/source/options file.

debian/source/options to exclude the config.sub, config.guess and Makefile files:

Don't store changes on autogenerated files
extend-diff-ignore = "(^|/)(config\.sub|config\.guess|Makefile)$"

注意

This approach always works, even when you can’t remove the file. It saves you
from having to make a backup of the unmodified file just to restore it before the
next build.

提示

If you use the debian/source/local-options file instead, you can hide this setting
from the generated source package. This may be useful when local non-standard
VCS files interfere with your packaging.

8.4 Fix with tar-ignore
This is for the native Debian package.

You can exclude certain files in the source tree from the generated tarball by adjusting the file glob.
Add the ”tar-ignore=… ” lines in the debian/source/options or debian/source/local-options files.

注意

For example, if the source package of a native package needs files with the
.o extension as part of the test data, the setting in “第 4.5 节”may be too
aggressive. You can work around this by dropping the -I option for DE-
BUILD_DPKG_BUILDPACKAGE_OPTS in “第 4.5 节”and adding the ”tar-
ignore=… ” lines in the debian/source/local-options file for each package.

52

CHAPTER 8. SANITIZATION OF THE SOURCE 8.5. FIX WITH “GIT CLEAN -DFX”

8.5 Fix with “git clean -dfx”

The problem of extraneous content in the second build can be avoided by restoring the source tree. This
is done by committing the source tree to the Git repository before the first build.

You can restore the source tree before the second package build. For example:

$ git reset --hard
$ git clean -dfx

This works because the dpkg-source command ignores the contents of typical VCS files in the source
tree, as specified by the DEBUILD_DPKG_BUILDPACKAGE_OPTS setting in “第 4.5 节”.

提示

If the source tree is not managed by a VCS, run ”git init; git add -A .; git commit”
before the first build.

53

Chapter 9

More on packaging

Let’s explore more fundamentals of Debian packaging.

9.1 软件包自定义

All customization data for the Debian source package resides in the debian/ directory as presented in
“第 5.7 节”:

• The Debian package build system can be customized through the debian/rules file (see “第 9.2
节”).

• 可以使用额外的配置文件（如 debian/ directory 目录下的 package.install 和 package.docs 文件）
以配合来自 debhelper 软件包的 dh_* 命令自定义 Debian 软件包文件的安装路径等信息（请参见
“第 6.14 节”）。

When these are not sufficient to make a good Debian package, -p1 patches of debian/patches/*
files are deployed to modify the upstream source. These are applied in the sequence defined in the
debian/patches/series file before building the package as presented in “第 5.9 节”.

You should address the root cause of the Debian packaging problem in the least invasive way possi-
ble. This approach will make the generated package more robust for future upgrades.

注意

If the patch addressing the root cause is useful to the upstream project, send it
to the upstream maintainer.

9.2 Customized debian/rules
Flexible customization of the 第 6.5 节 is achieved by adding appropriate override_dh_* targets and
their rules.

When a special operation is required for a certain dh_foo command invoked by the dh command,
its automatic execution can be overridden by adding the makefile target override_dh_foo in the de-
bian/rules file.

构建的过程可以使用某些上游提供的接口进行定制化，如使用传递给标准的源代码构建系统的参数。
这些构建系统包括但不限于：

• configure,

• Makefile,

• “python -m build”, 或者

• Build.PL。

54

CHAPTER 9. MORE ON PACKAGING 9.3. VARIABLES FOR DEBIAN/RULES

In this case, you should add the override_dh_auto_build target with “dh_auto_build -- arguments”.
This ensures that arguments are passed to the build system after the default parameters that dh_auto_build
usually passes.

提示

Avoid executing bare build system commands directly if they are supported by
the dh_auto_build command.

参见：

• “第 5.7 节”for the basic example.

• “第 10.3 节”to be reminded of the challenge involving the underlying build system.

• “第 10.10 节”for multiarch customization.

• “第 10.6 节”for hardening customization.

9.3 Variables for debian/rules
某些对自定义 debian/rules 有用的变量定义可以在 /usr/share/dpkg/ 目录下的文件中找到。比较重要的
包括：

pkg-info.mk Set DEB_SOURCE, DEB_VERSION, DEB_VERSION_EPOCH_UPSTREAM, DEB_VERSION_UPSTREAM_REVISION,
DEB_VERSION_UPSTREAM, and DEB_DISTRIBUTION variables obtained from dpkg-parsechangelog(1).
(useful for backport support etc..)

vendor.mk Set DEB_VENDOR and DEB_PARENT_VENDOR variables; and dpkg_vendor_derives_from
macro obtained from dpkg-vendor(1). (useful for vendor support (Debian, Ubuntu, …).)

architecture.mk Set DEB_HOST_* and DEB_BUILD_* variables obtained from dpkg-architecture(1).

buildflags.mk Set CFLAGS, CPPFLAGS, CXXFLAGS, OBJCFLAGS, OBJCXXFLAGS, GCJFLAGS,
FFLAGS, FCFLAGS, and LDFLAGS build flags obtained from dpkg-buildflags(1).

For example, you can add an extra option to CONFIGURE_FLAGS for linux-any target architectures
by adding the following to debian/rules:

DEB_HOST_ARCH_OS ?= $(shell dpkg-architecture -qDEB_HOST_ARCH_OS)
...
ifeq ($(DEB_HOST_ARCH_OS),linux)
CONFIGURE_FLAGS += --enable-wayland
endif

参见“第 10.10 节”、dpkg-architecture(1) 和 dpkg-buildflags(1)。

9.4 新上游版本

When a new upstream release tarball foo-newvwesion.tar.gz is released, the Debian source package
can be updated by invoking commands in the old source tree as:

$ uscan
... foo-newversion.tar.gz downloaded
$ uupdate -v newversion ../foo-newversion.tar.gz

• The debian/watch file in the old source tree must be a valid one.

• This make symlink ../foo_newvwesion.orig.tar.gz pointing to ../foo-newvwesion.tar.gz.

55

CHAPTER 9. MORE ON PACKAGING 9.5. MANAGE PATCH QUEUE WITH DQUILT

• Files are extracted from ../foo-newvwesion.tar.gz to ../foo-newversion/

• Files are copied from ../foo-oldversion/debian/ to ../foo-newvesion/debian/ .

After the above, you should refresh debian/patches/* files (see “第 9.5 节”) and update debian/changelog
with the dch(1) command.

When “debian uupdate”is specified at the end of line in the debian/watch file, uscan automatically
executes uupdate(1) after downloading the tarball.

9.5 Manage patch queue with dquilt
You can add, drop, and refresh debian/patches/* files with dquilt to manage patch queue.

• Add a new patch debian/patches/bugname.patch recording the upstream source modification on
the file buggy_file as:

$ dquilt push -a
$ dquilt new bugname.patch
$ dquilt add buggy_file
$ vim buggy_file
...

$ dquilt refresh
$ dquilt header -e
$ dquilt pop -a

• Drop (== disable) an existing patch

– Comment out pertinent line in debian/patches/series
– Erase the patch itself (optional)

• Refresh debian/patches/* files to make “dpkg-source -b”work as expected after updating a De-
bian package to the new upstream release.

$ uscan; uupdate # updating to the new upstream release
$ while dquilt push; do dquilt refresh ; done
$ dquilt pop -a

– If conflicts are encountered with “dquilt push”in the above, resolve them and run “dquilt
refresh”manually for each of them.

9.6 构建命令

Here is a recap of popular low level package build commands. There are many ways to do the same
thing.

• dpkg-buildpackage = 软件包打包工具的核心

• debuild = dpkg-buildpackage + lintian （在清理后的环境变量下构建）

• schroot = core of the Debian chroot environment tool

• sbuild = dpkg-buildpackage on custom schroot (build in the chroot)

9.7 Note on sbuild
The sbuild(1) command is a wrapper script of dpkg-buildpackage which builds Debian binary pack-
ages in a chroot environment managed by the schroot(1) command. For example, building for Debian
unstable suite can be done as:

$ sudo sbuild -d unstable

56

CHAPTER 9. MORE ON PACKAGING 9.8. SPECIAL BUILD CASES

In schroot(1) terminology, this builds a Debian package in a clean ephemeral chroot “chroot:unstable-
amd64-sbuild”started as a copy of the clean minimal persistent chroot “source:unstable-amd64-sbuild”
.

This build environment was set up as described in “第 4.6 节”with “sbuild-debian-developer-setup
-s unstable”which essentially did the following:

$ sudo mkdir -p /srv/chroot/dist-amd64-sbuild
$ sudo sbuild-createchroot unstable /srv/chroot/unstable-amd64-sbuild http://deb ←↩

.debian.org/debian
$ sudo usermod -a -G sbuild <your_user_name>
$ sudo newgrp -

The schroot(1) configuration for unstable-amd64-sbuild was generated at /etc/schroot/chroot.d/unstable-
amd64-sbuild.$suffix :

[unstable-amd64-sbuild]
description=Debian sid/amd64 autobuilder
groups=root,sbuild
root-groups=root,sbuild
profile=sbuild
type=directory
directory=/srv/chroot/unstable-amd64-sbuild
union-type=overlay

其中：

• The profile defined in the /etc/schroot/sbuild/ directory is used to setup the chroot environment.

• /srv/chroot/unstable-amd64-sbuild directory holds the chroot filesystem.

• /etc/sbuild/unstable-amd64-sbuild is symlinked to /srv/chroot/unstable-amd64-sbuild .

You can update this source chroot “source:unstable-amd64-sbuild”by:

$ sudo sbuild-update -udcar unstable

You can log into this source chroot “source:unstable-amd64-sbuild”by:

$ sudo sbuild-shell unstable

提示

If your source chroot filesystem is missing packages such as libeatmydata1,
ccache, and lintian for your needs, you may want to install these by logging into
it.

9.8 Special build cases
The orig.tar.gz file may need to be uploaded for a Debian revision other than 0 or 1 under some excep-
tional cases (e.g., for a security upload).

When an essential package becomes a non-essential one (e.g., adduser), you need to remove it
manually from the existing chroot environment for its use by piuparts.

9.9 上传 orig.tar.gz
当您第一次向归档上传软件包时，您还需要包含原始的 orig.tar.gz 源码。

如果 Debian 修订码是 1 或者 0，这都是默认的。否则，您必须使用带有 -sa 选项的 dpkg-buildpackage
命令。

57

https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/Chroot

CHAPTER 9. MORE ON PACKAGING 9.10. 跳过的上传

• dpkg-buildpackage -sa

• debuild -sa

• sbuild

• 对于“gbp buildpackage”，请编辑 ~/.gbp.conf 文件。

提示

另一方面，-sd 选项将会强制排除原始的 orig.tar.gz 源码。

提示

添加至 ~/.bashrc 文件。

9.10 跳过的上传

如果当跳过上传时，你在 debian/changelog 中创建了多个条目，你必须创建一个包含自上次上传以来
所有变更的 debian/changelog 文件。这可以通过指定 dpkg-buildpackage 选项 -v 以及上次上传的版本
号，比如 1.2 来完成。

• dpkg-buildpackage -v1.2

• debuild -v1.2

• sbuild --debbuildopts -v1.2

• 对于 gbp buildpackage，请编辑 ~/.gbp.conf 文件。

9.11 错误报告

The reportbug(1) command used for the bug report of binarypackage can be customized by the files in
usr/share/bug/binarypackage/.

dh_bugfiles 命令将安装以下位于 debian/ 目录中的的模板文件。

• debian/binarypackage.bug-control → usr/share/bug/binarypackage/control

– 该文件包含诸如重定向错误报告至其它软件包的一些指导性内容。

• debian/binarypackage.bug-presubj → usr/share/bug/binarypackage/presubj

– 该文件的内容将由 reportbug 命令向用户展示。

• debian/binarypackage.bug-script → usr/share/bug/binarypackage or usr/share/bug/binarypackage/script

– reportbug 命令运行此脚本以生成错误报告的模板文件。

58

CHAPTER 9. MORE ON PACKAGING 9.11. 错误报告

See dh_bugfiles(1) and “reportbug’s Features for Developers (README.developers)”

提示

如果您总是需要提醒提交报告的用户某些注意事项或询问他们某些问题，使用这
些文件可以将这个过程自动化。

59

file:///usr/share/doc/reportbug/README.developers.gz

Chapter 10

高级打包

我们来讨论一下 Debian 打包相关的高级内容。

10.1 Historical perspective
Let me oversimplify historical perspective of Debian packaging practices focused on the non-native pack-
aging.

Debian was started in 1990s when upstream packages were available from public FTP sites such
as Sunsite. In those early days, Debian packaging used Debian source format currently known as the
Debian source format “1.0”:

• The Debian source package ships a set of files for the Debian source package.

– package_version.orig.tar.gz : symlink to or copy of the upstream released file.
– package_version-revision.diff.gz : “One big patch”for Debian modifications.
– package_version-revision.dsc : package description.

• Several workaround approaches such as dpatch, dbs, or cdbs were deployed to manage multiple
topic patches.

The modern Debian source format “3.0 (quilt)”was invented around 2008 (see “ProjectsDebSrc3.0”
):

• The Debian source package ships a set of files for the Debian source package.

– package_version.orig.tar.?z : symlink to or copy of the upstream released file.
– package_version-revision.debian.tar.?z : tarball of debian/ for Debian modifications.

* The debian/source/format file contains “3.0 (quilt)”.

* Optional multiple topic patches are stored in the debian/patches/ directory.
– package_version-revision.dsc : package description.

• The standardized approach to manage multiple topic patches using quilt(1) is deployed for the
Debian source format “3.0 (quilt)”.

Most Debian packages adopted the Debian source formats “3.0 (quilt)”and “3.0 (native)”.
Now, the git(1) is popular with upstream and Debian developers. The git and its associated tools

are important part of the modern Debian packaging workflow. This modern workflow involving git will be
mentioned later in “第 11 章”.

10.2 当前的趋势

当前的 Debian 打包实践和其趋势也随时间不断发展。请参见：

• “Debian Trends” — Hints for “De facto standard”of Debian practices

60

https://www.debian.org/doc/manuals/project-history/index.en.html
https://en.wikipedia.org/wiki/Sunsite
https://wiki.debian.org/Projects/DebSrc3.0
https://trends.debian.net/

CHAPTER 10. 高级打包 10.3. NOTE ON BUILD SYSTEM

– 构建系统：dh
– Debian 源代码格式：“3.0 (quilt)”
– VCS: git
– VCS Hosting: salsa
– Rules-Requires-Root: adopted, fakeroot
– Copyright format: DEP-5

• “debhelper-compat-upgrade-checklist(7) manpage” — Upgrade checklist for debhelper

• “DEP - Debian Enhancement Proposals” — Formal proposals to enhance Debian

You can also search entire Debian source code data by yourself, too.

• “Debian Sources” — code search tool

– “Debian Code Search” — wiki page describing its usage

• “Debian Code Search” — another code search tool

10.3 Note on build system
Auto-generated files of the build system may be found in the released upstream tarball. These should
be regenerated when Debian package is build. E.g.:

• “dh $@ --with autoreconf”should be used in the debian/rules if Autotools (autoconf + automake)
are used.

Some modern build system may be able to download required source codes and binary files from
arbitrary remote hosts to satisfy build requirements. Don’t use this download feature. The official Debian
package is required to be build only with packages listed in Build-Depends: of the debian/control file.

10.4 持续集成

The dh_auto_test(1) command is a debhelper command that tries to automatically run the test suite
provided by the upstream developer during the Debian package building process.

The autopkgtest(1) command can be used after the Debian package building process. It tests gen-
erated Debian binary packages in the virtual environment using the debian/tests/control RFC822-style
metadata file as continuous integration (CI). See:

• Documents in the /usr/share/doc/autopkgtest/ directory

• “4. autopkgtest: Automatic testing for packages”of the “Ubuntu Packaging Guide”

您可以在 Debian 系统上探索使用不同的持续集成系统。

• The Salsa offers “第 11.3 节”.

• debci 软件包：建立在 autopkgtest 之上的持续集成平台

• jenkins 软件包：通用持续集成平台

10.5 自举

Debian cares about supporting new ports or flavours. The new ports or flavours require bootstrapping op-
eration for the cross-build of the initial minimal native-building system. In order to avoid build-dependency
loops during bootstrapping, the build-dependency needs to be reduced using the DEB_BUILD_PROFILES
environment variable.

61

https://salsa.debian.org/
https://dep-team.pages.debian.net/deps/dep5/
https://dep-team.pages.debian.net/
https://sources.debian.org/
https://wiki.debian.org/DebianCodeSearch
https://dcs.zekjur.net/
https://en.wikipedia.org/wiki/Continuous_integration
https://packaging.ubuntu.com/html/auto-pkg-test.html
https://salsa.debian.org
https://wiki.debian.org/DebianBootstrap

CHAPTER 10. 高级打包 10.6. 编译加固

See Debian wiki: “BuildProfileSpec”.

提示

If a core package foo build depends on a package bar with deep build depen-
dency chains but bar is only used in the test target in foo, you can safely mark
the bar with <!nocheck> in the Build-depends of foo to avoid build loops.

10.6 编译加固

The compiler hardening support spreading for Debian jessie (8.0) demands that we pay extra attention
to the packaging.

您应当详细阅读下列参考内容。

• Debian wiki: “Hardening”

• Debian wiki: “Hardening Walkthrough”

debmake 命令会向 debian/rules 文件中按需添加 DEB_BUILD_MAINT_OPTIONS、DEB_CFLAGS_MAINT_APPEND
和 DEB_LDFLAGS_MAINT_APPEND 的项目（参见“第 5 章”和 dpkg-buildflags(1)）。

10.7 可重现的构建

为了做到软件包可重现的构建，这里给出一些相关的建议。

• 不要嵌入基于系统时间的时间戳。

• Don’t embed the file path of the build environment.

• Use “dh $@”in the debian/rules to access the latest debhelper features.

• Export the build environment as “LC_ALL=C.UTF-8”(see “第 12.1 节”).

• 对上游源代码中使用的时间戳，使用 debhelper 提供的环境变量 $SOURCE_DATE_EPOCH 的值。

• 阅读“可重现构建”了解更多信息。

– “可重现构建操作方法”。

– “可重现构建时间戳处理提议”。

Reproducible builds are important for security and quality assurance. They allow independent verifi-
cation that no vulnerabilities or backdoors have been introduced during the build process.

由 dpkg-genbuildinfo(1) 生成的控制文件 source-name_source-version_arch.buildinfo 记录了构建
环境信息。参见 deb-buildinfo(5)

10.8 Substvar
debian/control 也定义了软件包的依赖关系，其中“变量替换机制”（substvar）的功能可以用来将软件包
维护者从跟踪（大多数简单的）软件包依赖的重复劳动中解放出来。请参见 deb-substvars(5)。

debmake 命令支持下列变量替换指令：

• ${misc:Depends}，可用于所有二进制软件包

• ${misc:Pre-Depends}，可用于所有 multiarch 软件包

• ${shlibs:Depends}，可用于所有含有二进制可执行文件或库的软件包

• ${python:Depends}，可用于所有 Python 软件包

62

https://wiki.debian.org/BuildProfileSpec
https://wiki.debian.org/Hardening
https://wiki.debian.org/HardeningWalkthrough
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/ReproducibleBuilds/Howto
https://wiki.debian.org/ReproducibleBuilds/TimestampsProposal
https://www.debian.org/doc/debian-policy/ch-source.html#s-substvars

CHAPTER 10. 高级打包 10.9. 库软件包

• ${python3:Depends}，可用于所有 Python3 软件包

• ${perl:Depends}，用于所有 Perl 软件包

• ${ruby:Depends}，用于所有 Ruby 软件包

For the shared library, required libraries found simply by “objdump -p /path/to/program | grep NEEDED”
are covered by the shlib substvar.

For Python and other interpreters, required modules found simply looking for lines with “import”,
“use”, “require”, etc., are covered by the corresponding substvars.

对其它没有部署属于自己范畴内的变量替换机制的情况，misc 变量替换占位符通常用来覆盖对应的
依赖替换需求。

对 POSIX shell 程序来说，并没有简单的办法来验证其依赖关系，substvar 的变量替换也无法自动得
出它们的依赖。

对使用动态加载机制，包括“GObject introspection”机制的库和模块来说，现在没有简单的方法可以
检查依赖关系，变量替换机制也无法自动推导出所需的依赖。

10.9 库软件包

打包软件库需要您投入更多的工作。下面有一些打包软件库的提醒和建议：

• 库二进制软件包必须根据“第 10.17 节”进行命名。

• Debian 按照 /usr/lib/<triplet>/libfoo-0.1.so.1.0.0 这样的路径提供共享链接库（参见“第 10.10
节”）。

• Debian 鼓励在共享库中使用带版本的符号（见“第 10.16 节”）。

• Debian 不提供 *.la libtool 库归档文件。

• Debian 不推荐使用、提供 *.a 静态库文件。

在打包共享库软件之前，请查阅：

• “Chapter 8 - Shared libraries”of the “Debian Policy Manual”

• “10.2 Libraries”of the “Debian Policy Manual”

• “6.7.2. Libraries”of the “Debian Developer’s Reference”

如需研究其历史背景，请参见：

• “逃离依赖地狱”1

– 该文档鼓励在共享库中使用带版本的符号。

• “Debian Library Packaging guide”2

– Please read the discussion thread following its announcement, too.

10.10 多体系结构

Debian wheezy（7.0，2013 年 5 月）在 dpkg 和 apt 中引入了对跨架构二进制软件包安装的多架构支
持（特别是 i386 架构和 amd64 架构，但也支持其它的组合），这部分内容值得我们额外关注。

您应当详细阅读下列参考内容。

• Ubuntu 维基（上游）

– “多架构规范（MultiarchSpec）”

1该文档是在 symbols 文件被引入之前写成的。
2在“第六章 - 开发（-DEV）软件包”中，存在强烈的使用含有 SONAME 版本号的 -dev 软件包名而非仅使用 -dev 作为名称的

偏好，但前 ftp-master 成员（Steve Langasek）对此有不同意见。请注意该文档在 multiarch 系统和 symbols 引入之前写成，可
能有一定程度的过时。

63

https://wiki.gnome.org/Projects/GObjectIntrospection
https://www.debian.org/doc/debian-policy/ch-sharedlibs.html
https://www.debian.org/doc/debian-policy/ch-files.html#libraries
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-libraries
https://debconf4.debconf.org/talks/dependency-hell/img1.html
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html
https://lists.debian.org/debian-devel/2004/06/msg00069.html
https://wiki.ubuntu.com/MultiarchSpec
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html#devpkg

CHAPTER 10. 高级打包 10.11. DEBIAN 二进制软件包的拆分

• Debian 维基（Debian 的现状）

– “Debian 多架构支持”

– “多架构支持/实现（Multiarch/Implementation）”

多架构支持使用三元组（<triplet>）的值，例如 i386-linux-gnu 和 x86_64-linux-gnu；它们出现在
共享链接库的安装路径中，例如 /usr/lib/<triplet>/，等等。

• 三元组 <triplet> 的值由 debhelper 脚本隐式提前设置好，软件包维护者无需担心。

• 不过，在 debian/rules 文件中用于 override_dh_* 目标的三元组 <triplet> 值需要由维护者手动进
行显式设置。三元组 <triplet> 的值可由 $(DEB_HOST_MULTIARCH) 变量在 debian/rules 文件
中获取到，具体方法如下：

DEB_HOST_MULTIARCH = $(shell dpkg-architecture -qDEB_HOST_MULTIARCH)
...
override_dh_install:
mkdir -p package1/lib/$(DEB_HOST_MULTIARCH)
cp -dR tmp/lib/. package1/lib/$(DEB_HOST_MULTIARCH)

参见：

• “第 9.3 节”

• “第 16.2 节”

• “第 10.12 节”

• “dpkg-architecture(1) manpage”

10.11 Debian 二进制软件包的拆分

对行为良好的构建系统来说，对 Debian 二进制包的拆分可以由如下方式实现。

• 为所有二进制软件包在 debian/control 文件中创建对应的二进制软件包条目。

• 在对应的 debian/二进制软件包名.install 文件中列出所有文件的路径（相对于 debian/tmp 目录）。

请查看本指南中相关的例子：

• “第 14.11 节”（基于 Autotools）

• “第 14.12 节”（基于 CMake）

An intuitive and flexible method to create the initial template debian/control file defining the split of
the Debian binary packages is accommodated with the -b option. See “第 16.2 节”.

10.12 拆包的场景和例子

对于下面这样的上游源代码示例，我们在这里给出使用 debmake 处理时一些典型的 multiarch 软件包拆
分的场景和做法：

• 一个软件库源码 libfoo-1.0.tar.gz

• 一个软件工具源码 bar-1.0.tar.gz，软件由编译型语言编写

• 一个软件工具源码 baz-1.0.tar.gz，软件由解释型语言编写

64

https://wiki.debian.org/Multiarch
https://wiki.debian.org/Multiarch/Implementation

CHAPTER 10. 高级打包 10.13. MULTIARCH LIBRARY PATH

二进制软件包 类型 Architecture: Multi-
Arch:

软件包内容

二进制软件包 类型 Architecture: Multi-
Arch:

软件包内容

libfoo1 lib* any same 共享库，可共同安装
libfoo-dev dev* any same 共享库头文件及相关开发文件，可共同

安装
libfoo-tools bin* any foreign 运行时支持程序，不可共同安装
libfoo-doc doc* all foreign 共享库文档
bar bin* any foreign 编译好的程序文件，不可共同安装
bar-doc doc* all foreign 程序的配套文档文件
baz script all foreign 解释型程序文件

10.13 Multiarch library path
Debian policy requires to comply with the “Filesystem Hierarchy Standard (FHS), version 3.0”, with the
exceptions noted in “File System Structure”.

The most notable exception is the use of /usr/lib/<triplet>/ instead of /usr/lib<qual>/ (e.g., /lib32/
and /lib64/) to support a multiarch library.

Table 10.2 多架构库路径选项
经典路径 i386 多体系结构路径 amd64 多体系结构路径
/lib/ /lib/i386-linux-gnu/ /lib/x86_64-linux-gnu/
/usr/lib/ /usr/lib/i386-linux-gnu/ /usr/lib/x86_64-linux-gnu/

对基于 Autotools 且由 debhelper（compat>=9）管理的软件包来说，这些路径设置已由 dh_auto_configure
命令自动处理。

对于其它使用不支持的构建系统的软件包，您需要按照下面的方式手动调整安装路径。

• If “./configure”is used in the override_dh_auto_configure target in debian/rules, make sure to
replace it with “dh_auto_configure --”while re-targeting the install path from /usr/lib/ to /usr/lib/$(DEB_HOST_MULTIARCH)/.

• 请在 debian/foo.install 文件中将所有出现的 /usr/lib/ 字符串替换为 /usr/lib/*/。

所有启用多架构的软件包安装至相同路径的文件必须内容完全相同。您必须小心处理，避免数据字节
序或者压缩算法等等问题带来的文件内容差异。

位于默认路径 /usr/lib/ 和 /usr/lib/<triplet>/ 的共享库可被自动加载。
对位于其它路径的共享库，必须使用 pkg-config 命令设置 GCC 选项 -l 以正确进行加载。

10.14 Multiarch header file path
在支持多架构的 Debian 系统上，GCC 默认会同时包含、使用 /usr/include/ 和 /usr/include/<triplet>/
下的头文件。

如果头文件不在这些路径中，必须使用 pkg-config 命令设置 GCC 的 -I 参数以使得“#include
<foo.h>”正常工作。

Table 10.3 多架构头文件路径选项
经典路径 i386 多体系结构路径 amd64 多体系结构路径
/usr/include/ /usr/include/i386-linux-gnu/ /usr/include/x86_64-linux-gnu/
/usr/include/软件包名/ /usr/include/i386-linux-gnu/软件

包名/
/usr/include/x86_64-linux-
gnu/软件包名/

/usr/lib/i386-linux-gnu/软件包名/ /usr/lib/x86_64-linux-gnu/软件包
名/

65

https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://www.debian.org/doc/debian-policy/ch-opersys.html#file-system-structure

CHAPTER 10. 高级打包 10.15. MULTIARCH *.PC FILE PATH

为库文件使用 /usr/lib/<triplet>/软件包名/ 路径可帮助上游维护者对使用 /usr/lib/<triplet> 的多架构
系统和使用 /usr/lib<qual>/ 的双架构系统使用相同的安装脚本。3

使用包含 packagename 的文件路径也使得在同一系统上同时安装多个架构的开发库成为可能。

10.15 Multiarch *.pc file path
packagename 用来获取系统上已安装库的信息。它在 *.pc 文件中存储配置参数，用来设置 GCC 的 -I
和 -l 选项。

Table 10.4 *.pc 文件路径选项
经典路径 i386 多体系结构路径 amd64 多体系结构路径
/usr/lib/pkgconfig/ /usr/lib/pkgconfig/ /usr/lib/x86_64-linux-

gnu/pkgconfig/

10.16 库符号

Debian lenny（5.0，2009 年 5 月）中引入的 dpkg 符号支持可以帮助我们管理同一共享链接库软件包
的向后 ABI 兼容性（backward ABI compatibility）。二进制软件包中的 DEBIAN/symbols 文件提供了每
个符号及其对应的最小版本号。

一个极其简化的软件库打包流程大概如下所示。

• Extract the old DEBIAN/symbols file of the immediate previous binary package with the “dpkg-deb
-e”command.

– 或者，mc 命令也可以用来解压得到 DEBIAN/symbols 文件。

• 将其复制为 debian/binarypackage.symbols 文件。

– 如果这是第一次打包的话，可以只创建一个空文件。

• 构建二进制软件包。

– 如果 dpkg-gensymbols 命令警告添加了新的符号的话：

* Extract the updated DEBIAN/symbols file with the “dpkg-deb -e”command.

* 将其中的 Debian 修订版本号，例如 -1，从文件中去除。

* 将其复制为 debian/binarypackage.symbols 文件。

* 重新构建二进制软件包。

– 如果 dpkg-gensymbols 命令不报和新链接符号有关的警告：

* 您已完成了共享库的打包工作。

如需了解详细信息，您应当阅读下列第一手参考资料。

• “8.6.3 The symbols system”of the “Debian Policy Manual”

• “dh_makeshlibs(1) manapage”

• “dpkg-gensymbols(1) manapage”

• “dpkg-shlibdeps(1) manapage”

• “deb-symbols(5) manapage”

您也应当查看：

• Debian 维基“使用符号文件”

3This path is compliant with the FHS. “Filesystem Hierarchy Standard: /usr/lib : Libraries for programming and packages”
states “Applications may use a single subdirectory under /usr/lib. If an application uses a subdirectory, all architecture-dependent
data exclusively used by the application must be placed within that subdirectory.”

66

https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#the-symbols-system
https://wiki.debian.org/UsingSymbolsFiles
https://www.debian.org/doc/packaging-manuals/fhs/fhs-2.3.html#USRLIBLIBRARIESFORPROGRAMMINGANDPA

CHAPTER 10. 高级打包 10.17. LIBRARY PACKAGE NAME

• Debian wiki: “Projects/ImprovedDpkgShlibdeps”

• Debian kde team: “Working with symbols files”

• “第 14.11 节”

• “第 14.12 节”

提示

For C++ libraries and other cases where the tracking of symbols is problematic,
follow “8.6.4 The shlibs system”of the “Debian Policy Manual”, instead. Please
make sure to erase the empty debian/binarypackage.symbols file generated by
the debmake command. For this case, the DEBIAN/shlibs file is used.

10.17 Library package name
我们考虑 libfoo 这个库的上游 tarball 源码压缩包的名字从 libfoo-7.0.tar.gz 更新为了 libfoo-8.0.tar.gz，
同时带有一次 SONAME 大版本的跳跃（并因此影响了其它软件包）。

库的二进制软件包将必须从 libfoo7 重命名为 libfoo8 以保持使用 unstable 套件的系统上所有依赖该
库的软件包在上传了基于 libfoo-8.0.tar.gz 的新库后仍然能够正常运行。

警告

如果这个二进制库软件包没有得到更名，许多使用 unstable 套件的系统上的各
个依赖该库的软件包会在新的库包上传后立刻破损，即便立刻请求进行 binNMU
上传也无法避免这个问题。由于种种原因，binNMU 不可能在上传后立刻开始进
行，故无法缓解问题。

-dev 软件包必须遵循以下命名规则：

• 使用不带版本号的 -dev 软件包名称：libfoo-dev

– 该情况通常适用于依赖关系处于叶节点的库软件包。

– 仓库内只允许存在一个版本的库源码包。

* The associated library package needs to be renamed from libfoo7 to libfoo8 to prevent
dependency breakage in the unstable suite during the library transition.

– This approach should be used if the simple binNMU resolves the library dependency quickly
for all affected packages. (ABI change by dropping the deprecated API while keeping the
active API unchanged.)

– This approach may still be a good idea if manual code updates, etc. can be coordinated and
manageable within limited packages. (API change)

• 使用带版本的 -dev 软件包名称：libfoo7-dev 和 libfoo8-dev

– 该情况通常适用于各类重要库软件包。

– 两个版本的库源码包可同时出现在发行版仓库中。

* 令所有依赖该库的软件包依赖 libfoo-dev。

* 令 libfoo7-dev 和 libfoo8-dev 两者都提供 libfoo-dev。

* 源码包需要从 libfoo-?.0.tar.gz 相应地重命名为 libfoo7-7.0.tar.gz 和 libfoo8-8.0.tar.gz。

* 需要仔细选择 libfoo7 和 libfoo8 软件包文件安装时的路径，如头文件等等，以保证它们
可以同时安装。

– 可能的话，不要使用这个重量级的、需要大量人为干预的方法。

67

https://wiki.debian.org/Projects/ImprovedDpkgShlibdeps
https://qt-kde-team.pages.debian.net/symbolfiles.html
https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#the-shlibs-system
https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface

CHAPTER 10. 高级打包 10.18. 库变迁

– This approach should be used if the update of multiple dependent packages require manual
code updates, etc. (API change) Otherwise, the affected packages become RC buggy with
FTBFS (Fails To Build From Source).

提示

如果包内数据文件编码方案有所变化（如，从 latin1 变为 utf-8），该场景应比照
API 变化做类似的考虑与处理。

参见“第 10.9 节”。

10.18 库变迁

When you package a new library package version which affects other packages, you must file a transition
bug report against the release.debian.org pseudo package using the reportbug command with the ben
file and wait for the approval for its upload from the Release Team.

发行团队提供了“变迁跟踪系统”。参见“变迁（Transition）”。

小心

请确保您按照“第 10.17 节”的描述正确地对二进制软件包进行了重命名。

10.19 binNMU 安全

A “binNMU”is a binary-only non-maintainer upload performed for library transitions etc. In a binNMU
upload, only the “Architecture: any”packages are rebuilt with a suffixed version number (e.g. version
2.3.4-3 will become 2.3.4-3+b1). The “Architecture: all”packages are not built.

The dependency defined in the debian/control file among binary packages from the same source
package should be safe for the binNMU. This needs attention if there are both “Architecture: any”and
“Architecture: all”packages involved in it.

• “Architecture: any”package: depends on “Architecture: any”foo package

– Depends: foo (= ${binary:Version})

• “Architecture: any”package: depends on “Architecture: all”bar package

– Depends: bar (= ${source:Version})

• “Architecture: all”package: depends on “Architecture: any”baz package

– Depends: baz (>= ${source:Version}), baz (<< ${source:Version}.0~)

10.20 调试信息

Debian 软件包在构建时都会生成调试信息；但打包生成二进制软件包时，这些打包信息会按照“《Debian
政策手册》”中“第十章 - 文件”的要求进行剥离。

参见

• “6.7.9. Best practices for debug packages”of the “Debian Developer’s Reference”.

• “18.2 Debugging Information in Separate Files”of the “Debugging with gdb”

68

https://en.wikipedia.org/wiki/Application_programming_interface
https://ben.debian.net/#_query_language
https://ben.debian.net/#_query_language
https://wiki.debian.org/Teams/ReleaseTeam
https://release.debian.org/transitions/
https://wiki.debian.org/Teams/ReleaseTeam/Transitions
https://wiki.debian.org/binNMU
https://www.debian.org/doc/debian-policy/ch-files.html
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-dbg
https://sourceware.org/gdb/current/onlinedocs/gdb/Separate-Debug-Files.html#Separate-Debug-Files

CHAPTER 10. 高级打包 10.21. -DBGSYM PACKAGE

• “dh_strip(1) manapage”

• “strip(1) manapage”

• “readelf(1) manapage”

• “objcopy(1) manapage”

• Debian wiki: “DebugPackage”

• Debian wiki: “AutomaticDebugPackages”

• Debian debian-devel 列表发布的邮件：“自动调试软件包状态”(2015-08-15)

10.21 -dbgsym package
调试信息由 dh_strip 命令的默认行为自动打包并进行剥离。所分离得到的调试软件包名具有 -dbgsym
的后缀。

• debian/rules 文件不应显式包括 dh_strip 。

• 编辑 debian/control 文件，在 Build-Depends 中写入 debhelper-compat (>=13)，同时移除
Build-Depends 中对 debhelper 的依赖。

10.22 debconf
debconf 软件包可以帮助我们在下列两种情况下配置软件包：

• 在 debian-installer（Debian 安装器）预安装时进行非交互式配置。

• interactively from the menu interface (dialog, gnome, kde, …)

– 软件包安装时：由 dpkg 命令调用

– 对已安装软件包：由 dpkg-reconfigure 命令调用

软件包安装时的所有用户交互都必须由这里的 debconf 系统进行处理，下列配置文件对这个过程进
行控制。

• debian/binarypackage.config

– 这是 debconf config 脚本，用于向用户询问对于配置软件包必需的问题。

• debian/binarypackage.template

– 这是 debconf templates（模板）文件，用于向用户询问对于配置软件包必需的问题。

These debconf files are called by package configuration scripts in the binary Debian package

• DEBIAN/binarypackage.preinst

• DEBIAN/binarypackage.prerm

• DEBIAN/binarypackage.postinst

• DEBIAN/binarypackage.postrm

See dh_installdebconf(1), debconf(7), debconf-devel(7) and “3.9.1 Prompting in maintainer scripts”
in the “Debian Policy Manual”.

69

https://wiki.debian.org/DebugPackage
https://wiki.debian.org/AutomaticDebugPackages
https://lists.debian.org/debian-devel/2015/08/msg00443.html
https://www.debian.org/doc/debian-policy/ch-binary.html#prompting-in-maintainer-scripts

Chapter 11

Packaging with git

Up to “第 10 章”, we focused on packaging operations without using Git or any other VCS. These
traditional packaging operations were based on the tarball released by the upstream as mentioned in “第
 10.1 节”.

Currently, the git(1) command is the de-facto platform for the VCS tool and is the essential part of
both upstream development and Debian packaging activities. (See Debian wiki “Debian git packaging
maintainer branch formats and workflows”for existing VCS workflows.)

注意

Since the non-native Debian source package uses “diff -u”as its backend tech-
nology for the maintainer modification, it can’t represent modification involving
symlink, file permissions, nor binary data (March 2022 discussion on debian-
devel@l.d.o). Please avoid making such maintainer modifications even though
these can be recorded in the Git repository.

Since VCS workflows are complicated topic and there are many practice styles, I only touch on some
key points with minimal information, here.

Salsa is the remote Git repository service with associated tools. It offers the collaboration platform
for Debian packaging activities using a custom GitLab application instance. See:

• “第 11.1 节”

• “第 11.2 节”

• “第 11.3 节”

There are 2 styles of branch names for the Git repository used for the packaging. See “第 11.4 节”.
There are 2 main usage styles for the Git repository for the packaging. See:

• “第 11.5 节”

• “第 11.6 节”

There are 2 notable Debian packaging tools for the Git repository for the packaging.

• gbp(1) and its subcommands:

– This is a tool designed to work with “第 11.5 节”.
– See “第 11.7 节”.

• dgit(1) and its subcommands:

– This is a tool designed to work with both “第 11.6 节”and “第 11.5 节”.
– This contains a tool to upload Debian packages using the dgit server.
– See “第 11.8 节”.

70

https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Version_control
https://wiki.debian.org/GitPackagingSurvey
https://wiki.debian.org/GitPackagingSurvey
https://lists.debian.org/debian-devel/2022/03/msg00124.html
https://lists.debian.org/debian-devel/2022/03/msg00124.html
https://salsa.debian.org
https://en.wikipedia.org/wiki/GitLab

CHAPTER 11. PACKAGING WITH GIT 11.1. SALSA 存储库

11.1 Salsa 存储库

强烈推荐将 Debian 打包用的源代码托管在 Salsa 平台上。目前，超过 90% 的 Debian 源代码打包仓库
均托管在 Salsa 上。1

The exact VCS repository hosting an existing Debian source code package can be identified by a
metadata field Vcs-* which can be viewed with the apt-cache showsrc <package-name> com-
mand.

11.2 Salsa 账户设置

After signing up for an account on Salsa, make sure that the following pages have the same e-mail
address and GPG keys you have configured to be used with Debian, as well as your SSH key:

• https://salsa.debian.org/-/profile/emails

• https://salsa.debian.org/-/user_settings/gpg_keys

• https://salsa.debian.org/-/user_settings/ssh_keys

11.3 Salsa 持续集成服务

Salsa runs Salsa CI service as an instance of GitLab CI for “第 10.4 节”.
For every “git push”instances, tests which mimic tests run on the official Debian package service can

be run by setting Salsa CI configuration file “第 6.13 节”as:

include:
- https://salsa.debian.org/salsa-ci-team/pipeline/raw/master/recipes/debian.yml

Customizations here

11.4 分支名称

The Git repository for the Debian packaging should have at least 2 branches:

• debian-branch to hold the current Debian packaging head.

– old style: master (or debian, main, …)
– DEP-14 style: debian/latest

• upstream-branch to hold the upstream releases in the imported form.

– old style: upstream
– DEP-14 style: upstream/latest

In this tutorial, old style branch names are used in examples for simplicity.

注意

This upstream-branch may need to be created using the tarball released by the
upstream independent of the upstream Git repository since it tends to contain
automatically generated files.

The upstream Git repository content can co-exit in the local Git repository used for the Debian pack-
aging by adding its copy. E.g.:

1对 git.debian.org 和 alioth.debian.org 的使用已被废弃。

71

https://salsa.debian.org
https://salsa.debian.org
https://salsa.debian.org
https://salsa.debian.org/-/profile/emails
https://salsa.debian.org/-/user_settings/gpg_keys
https://salsa.debian.org/-/user_settings/ssh_keys
https://salsa.debian.org
https://salsa.debian.org/salsa-ci-team/pipeline
https://docs.gitlab.com/ee/ci/
https://salsa.debian.org/salsa-ci-team/pipeline
https://dep-team.pages.debian.net/deps/dep14/
https://dep-team.pages.debian.net/deps/dep14/

CHAPTER 11. PACKAGING WITH GIT 11.5. PATCH UNAPPLIED GIT REPOSITORY

$ git remote add upstreamvcs <url-upstream-git-repo>
$ git fetch upstreamvcs master:upstream-master

This allows easy cherry-picking from the upstream Git repository for bug fixes.

11.5 Patch unapplied Git repository
The patch unapplied Git repository can be summarized as:

• This seems to be the traditional practice as of 2024.

• The source tree matches extracted contents by “dpkg-source -x --skip-patches”of the Debian
source package.

– The upstream source is recorded in the Git repository without changes.
– The maintainer modified contents are confined within the debian/* directory.
– Maintainer changes to the upstream source are recorded in debian/patches/* files for the

Debian source format “3.0 (quilt)”.

• This repository style is useful for all variants of traditional workflows and gbp based workflow:

– “第 5.7 节”(no patch)
– “第 5.10 节”

* debian/patches/* files can also be generated using “git format-patch”, “git diff”, or “gitk”
from git commits in the through-away maintainer modification branch or from the upstream
unreleased commits.

– “第 5.11 节”including the last “dquilt pop -a”step
– “第 11.9 节”

• Use helper scripts such as dquilt(1) and gbp-pq(1) to manage data in debian/patches/* files.

– Add .pc line to the ~/.gitignore file if dquilt is used.
– Add unapply-patches and abort-on-upstream-changes lines in the debian/source/local-

options file.

• Use “dpkg-source -b”to build the Debian source package.

• Use dput(1) to upload the Debian source package.

– Use “dgit --gbp push-source”or “dgit --gbp push”instead to upload the Debian package via
the dgit server (see “dgit-maint-gbp(7)”).

注意

The debian/source/local-options and debian/source/local-patch-header files
are meant to be recorded by the git command. These aren’t included in the
Debian source package.

72

CHAPTER 11. PACKAGING WITH GIT 11.6. PATCH APPLIED GIT REPOSITORY

11.6 Patch applied Git repository
The patch applied Git repository can be summarized as:

• The source tree matches extracted contents by “dpkg-source -x”of the Debian source package.

– The source tree is buildable and the same as what NMU maintainers see.
– The source is recorded in the Git repository with maintainer changes including the debian/

directory.
– Maintainer changes to the upstream source are also recorded in debian/patches/* files for

the Debian source format “3.0 (quilt)”.

Use one of workflow styles:

• dgit-maint-merge(7) workflow.

– Use this if you don’t intend to record topic patches in the Debian source package.
– Good enough for packages only with trivial modifications to the upstream.
– Only choice for packages with intertwined modification histories to the upstream
– Add auto-commit and single-debian-patch lines in the debian/source/local-options file
– Use “git checkout upstream; git pull”to pull the new upstream commit and use “git checkout

master ; git merge <new-version-tag>”to merge it to the master branch.
– Use “dpkg-source -b”to build the Debian source package.
– Use “dgit push-source”or “dgit push”for uploading the Debian package via the dgit server.
– See “第 5.12 节”for example.

• dgit-maint-debrebase(7) workflow.

– Use this if you wish to commit maintainer changes to the patch applied Git repository with the
same granularity as patches of “第 11.9 节”.

– Good for packages with multiple sequenced modifications to the upstream.
– Use “dgit build-source”to build the Debian source package.
– Use “dgit push-source”or “dgit push”for uploading the Debian package via the dgit server.
– Details of this workflow are beyond the scope of this tutorial document. See “第 11.12 节”for

more.

11.7 Note on gbp
The gbp command is provided by the git-buildpackage package.

• This command is designed to manage contents of “第 11.5 节”efficiently.

• Use “gbp import-orig”to import the new upstream tar to the git repository.

– The “--pristine-tar”option for the “git import-orig”command enables storing the upstream
tarball in the same git repository.

– The “--uscan”option as the last argument of the “gbp import-orig”command enables down-
loading and committing the new upstream tarball into the git repository.

• Use “gbp import-dsc”to import the previous Debian source package to the git repository.

• Use “gbp dch”to generate the Debian changelog from the git commit messages.

• Use “gbp buildpackage”to build the Debian binary package from the git repository.

– The sbuild package can be used as its clean chroot build backend either by configuration or
adding “--git-builder=’sbuild -A -s --source-only-changes -v -d unstable’”

73

CHAPTER 11. PACKAGING WITH GIT 11.8. NOTE ON DGIT

• Use “gbp pull”to update the debian, upstream and pristine-tar branches safely from the remote
repository.

• Use “gbp pq”to manage quilt patches without using dquilt command.

• Use “gbp clone REPOSITORY_URL”to clone and set up tracking branches for debian, upstream
and pristine-tar.

Package history management with the git-buildpackage package is becoming the standard practice
for many Debian maintainers. See more at:

• “使用 git-buildpackage 构建 Debian 软件包”

• “4 tips to maintain a “3.0 (quilt)”Debian source package in a VCS”

• The systemd packaging practice documentation on “Building from source”

• The workflow mentioned in dgit-maint-gbp(7) which enables to use this gbp with dgit

11.8 Note on dgit
The dgit command is provided by the dgit package.

• This command is designed to manage contents of “第 11.6 节”efficiently.

– This enables to access the Debian package repository as if it is a git remote repository.

• This command supports uploading Debian packages using the dgit server from both “第 11.5 节”
and “第 11.6 节”.

The new dgit package offers commands interact with the Debian repository as if it was a git reposi-
tory. It does not replace gbp-buildpackage and both can be used at the same time. Using plain gbp-
buildpackage is recommended for developers who want to run git push/pull on Salsa and use things
such as Salsa CI or Merge Requests on Salsa.

For more details see the extensive guides:

• dgit-maint-gbp(7) — for the Debian source format “3.0 (quilt)”package with its Debian Git reposi-
tory which is kept usable also for people using gbp-buildpackage(1) using “第 11.5 节”.

• dgit-maint-merge(7) — for the Debian source format “3.0 (quilt)”package with its changes flowing
both ways between the upstream Git repository and the Debian Git repository which are tightly
coupled using “第 11.6 节”.

• dgit-maint-debrebase(7) — for the Debian source format “3.0 (quilt)”package with its changes
flowing mostly one way from the upstream Git repository to the Debian Git repository using “第
 11.6 节”.

• dgit-maint-native(7) — for the Debian source format “3.0 (native)”package in the Debian Git repos-
itory. (No maintainer changes)

The dgit(1) command can push the easy-to-trace change history to the https://browse.dgit.debian.org/-
site and can upload Debian package to the Debian repository properly without using dput(1).

The concept around dgit is beyond this tutorial document. Please start reading relevant information:

• “dgit: use the Debian archive as a git remote (2015)”

• “tag2upload (2023)”

11.9 Patch by “gbp-pq”approach
For “第 11.5 节”, you can generate debian/patches/* files using the gbp-pq(1) command from git
commits in the through-away patch-queue branch.

Unlike dquilt which offers similar functionality as seen “第 5.11 节”and “第 9.5 节”, gbp-pq doesn’
t use .pc/* files to track patch state, but instead gbp-pq utilizes temporary branches in git.

74

https://honk.sigxcpu.org/projects/git-buildpackage/manual-html/gbp.html
https://raphaelhertzog.com/2010/11/18/4-tips-to-maintain-a-3-0-quilt-debian-source-package-in-a-vcs/
https://salsa.debian.org/systemd-team/systemd/-/blob/debian/master/debian/README.source
https://browse.dgit.debian.org/
https://www.chiark.greenend.org.uk/~ijackson/2015/debconf-dgit-talk/slides.pdf
https://wiki.debian.org/DebianEvents/gb/2023/MiniDebConfCambridge/Jackson?action=AttachFile&do=get&target=slides.pdf

CHAPTER 11. PACKAGING WITH GIT 11.10. MANAGE PATCH QUEUE WITH GBP-PQ

11.10 Manage patch queue with gbp-pq
You can add, drop, and refresh debian/patches/* files with gbp-pq to manage patch queue.

If the package is managed in “第 11.5 节”using the git-buildpackage package, you can revise the
upstream source to fix bug as the maintainer and release a new Debian revision using gbp pq.

• Add a new patch recording the upstream source modification on the file buggy_file as:

$ git checkout master
$ gbp pq import
gbp:info: ... imported on 'patch-queue/master
$ vim buggy_file
...
$ git add buggy_file
$ git commit
$ gbp pq export
gbp:info: On 'patch-queue/master', switching to 'master'
gbp:info: Generating patches from git (master..patch-queue/master)
$ git add debian/patches/*
$ dch -i
$ git commit -a -m "Closes: #<bug_number>"
$ git tag debian/<version>-<rev>

• Drop (== disable) an existing patch

– Comment out pertinent line in debian/patches/series
– Erase the patch itself (optional)

• Refresh debian/patches/* files to make “dpkg-source -b”work as expected after updating a De-
bian package to the new upstream release.

$ git checkout master
$ gbp pq --force import # ensure patch-queue/master branch
gbp:info: ... imported on 'patch-queue/master
$ git checkout master
$ gbp import-orig --pristine-tar --uscan
...

gbp:info: Successfully imported version ?.?.? of ../packagename_?.?.?.orig. ←↩
tar.gz

$ gbp pq rebase
... resolve conflicts and commit to patch-queue/master branch
$ gbp pq export
gbp:info: On 'patch-queue/master', switching to 'master'
gbp:info: Generating patches from git (master..patch-queue/master)
$ git add debian/patches
$ git commit -m "Update patches"
$ dch -v <newversion>-1
$ git commit -a -m "release <newversion>-1"
$ git tag debian/<newversion>-1

11.11 gbp import-dscs --debsnap
For Debian source packages named “<source-package>”recorded in the snapshot.debian.org archive,
an initial git repository managed in “第 11.5 节”with all of the Debian version history can be generated
as follows.

$ gbp import-dscs --debsnap --pristine-tar <source-package>

75

http://snapshot.debian.org/

CHAPTER 11. PACKAGING WITH GIT 11.12. NOTE ON DGIT-MAINT-DEBREBASE …

11.12 Note on dgit-maint-debrebase workflow
Here are some hints around dgit-maint-debrebase(7). 2

• Use “dgit setup-new-tree”to prepare the local git working repository.

• The first maintainer modification commit should contain files only in the debian/ directory excluding
files in the debian/patches directory.

• debian/patches/* files are generated from the maintainer modification commit history using the
“dgit quilt-fixup”command automatically invoked from “dgit build”and “dgit push”.

• Use “git-debrebase new-version <new-version-tag>”to rebase the maintainer modification com-
mit history with automatically updated debian/changelog.

• Use “git-debrebase conclude”to make a new pseudomerge (== “git merge -s ours”) to record
Debian package with clean ff-history.

See dgit-maint-debrebase(7), dgit(1) and git-debrebase(1) for more.

11.13 Quasi-native Debian packaging
The quasi-native packaging scheme packages a source without the real upstream tarball using the non-
native package format.

提示

Some people promote this quasi-native packaging scheme even for programs
written only for Debian since it helps to ease communication with the downstream
distros such as Ubuntu for bug fixes etc.

This quasi-native packaging scheme involves 2 preparation steps:

• Organize its source tree almost like native Debian package (see “第 6.4 节”) with debian/* files
with a few exceptions:

– Make debian/source/format to contain “3.0 (quilt)”instead of “3.0 (native)”.
– Make debian/changelog to contain version-revision instead of version .

• Generate missing upstream tarball preferably without debian/* files.

– For Debian source format “3.0 (quilt)”, removal of files under debian/ directory is an optional
action.

The rest is the same as the non-native packaging workflow as written in “第 6.1 节”.
Although this can be done in many ways (“第 16.4 节”), you can use the Git repository and “git

deborig”as:

$ cd /path/to/<dirname>
$ dch -r
... set its <version>-<revision>, e.g., 1.0-1
$ git tag -s debian/1.0-1
$ git rm -rf debian
$ git tag -s upstream/1.0
$ git commit -m upstream/1.0
$ git reset --hard HEAD^
$ git deborig
$ sbuild

2I may be incorrect, here.

76

Chapter 12

提示

Please also read insightful pages linked from “Notes on Debian”by Russ Allbery (long time Debian de-
veloper) which have best practices for advanced packaging topics.

12.1 在 UTF-8 环境下构建

构建环境的默认语言环境是 C。
某些程序（如 Python3 的 read 函数）会根据区域设置改变行为。
添加以下代码到 debian/rules 文件可以确保程序使用 C.UTF-8 的区域语言设置（locale）进行构建。

LC_ALL := C.UTF-8
export LC_ALL

12.2 UTF-8 转换

If upstream documents are encoded in old encoding schemes, converting them to UTF-8 is a good idea.
Use the iconv command in the libc-bin package to convert the encoding of plain text files.

$ iconv -f latin1 -t utf8 foo_in.txt > foo_out.txt

使用 w3m(1) 将 HTML 文件转换为 UTF-8 纯文本文件。执行此操作时，请确保在 UTF-8 语言环境下
执行它。

$ LC_ALL=C.UTF-8 w3m -o display_charset=UTF-8 \
-cols 70 -dump -no-graph -T text/html \
< foo_in.html > foo_out.txt

在 debian/rules 文件的 override_dh_* 目标中运行这些脚本。

12.3 Hints for Debugging
当您遇到构建问题或者生成的二进制程序核心转储时，您需要自行解决他们。这就是除错（debug）。

This is too deep a topic to describe here. So, let me just list few pointers and hints for some typical
debug tools.

• Wikipedia: “core dump”

– “man core”

– Update the “/etc/security/limits.conf”file to include the following:

* soft core unlimited

– “ulimit -c unlimited”in ~/.bashrc
– “ulimit -a”to check

77

https://www.eyrie.org/~eagle/notes/debian/
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Core_dump

CHAPTER 12. 提示 12.3. HINTS FOR DEBUGGING

– Press Ctrl-\ or “kill -ABRT ’PID’”to make a core dump file

• gdb - The GNU Debugger

– “info gdb”

– “Debugging with GDB”in /usr/share/doc/gdb-doc/html/gdb/index.html

• strace - 跟踪系统调用和信号

– 使用 /usr/share/doc/strace/examples/ 中的 strace-graph 脚本来建立一个好看的树形图

– “man strace”

• ltrace - 跟踪库调用

– “man ltrace”

• “sh -n script.sh”- Syntax check of a Shell script

• “sh -x script.sh”- Trace a Shell script

• “python3 -m py_compile script.py”- Syntax check of a Python script

• “python3 -mtrace --trace script.py”- Trace a Python script

• “perl -I ../libpath -c script.pl”- Syntax check of a Perl script

• “perl -d:Trace script.pl”- Trace a Perl script

– 安装 libterm-readline-gnu-perl 软件包或者同类型软件来添加输入行编辑功能与历史记录支
持。

• lsof - 按进程列出打开的文件

– “man lsof”

提示

script 命令能帮助记录控制台输出。

提示

在 ssh 命令中搭配使用 screen 和 tmux 命令，能够提供安全并且强健的远程连
接终端。

提示

libreply-perl（新的）软件包和来自 libdevel-repl-perl（旧的）软件包的 re.pl 命
令为 Perl 提供了一个类似 Python 和 Shell 的 REPL (=READ + EVAL + PRINT +
LOOP) 环境。

78

CHAPTER 12. 提示 12.3. HINTS FOR DEBUGGING

提示

The rlwrap and rlfe commands add input line editing capability with history sup-
port to any interactive commands. E.g. “rlwrap dash -i’”.

79

Chapter 13

工具的使用

这里列出与 Debian 打包相关的值得注意的工具。

注意

The descriptions in this section are intentionally brief. Prospective maintainers
are strongly encouraged to search for and read all relevant documentation asso-
ciated with these commands.

注意

Examples here use the gz-compression. The xz-compression may be used in-
stead.

13.1 debdiff
您可以使用 debdiff 命令来对比两个 Debian 软件包内容的差别。

$ debdiff old-package.dsc new-package.dsc

您也可以使用 debdiff 命令来对比两组二进制 Debian 软件包中的文件列表。

$ debdiff old-package.changes new-package.changes

当检查源代码包中哪些文件被修改时，这个命令非常有用。它还可以用来检测二进制包中是否有文件
在更新过程中发生变动，比如被意外替换或删除。

Debian now enforces the source-only upload when developing packages. So there may be 2 different
*.changes files:

• package_version-revision_source.changes for the normal source-only upload

• package_version-revision_arch.changes for the binary upload

13.2 dget
您可以使用 dget 命令来下载 Debian 源包的文件集。

$ dget https://www.example.org/path/to/package_version-rev.dsc

80

CHAPTER 13. 工具的使用 13.3. MK-ORIGTARGZ

13.3 mk-origtargz
You can make the upstream tarball ../foo-newversion.tar.[xg]z accessible from the Debian source tree
as ../foo_newversion.orig.tar.[xg]z. This command is useful for renaming and symlinking the upstream
tarball to the expected Debian naming convention.

13.4 origtargz
You can fetch the pre-existing orig tarball of a Debian package from various sources, and unpack it with
origtargz command.

This is basically for -2, -3, … revisions.

13.5 git deborig
If the upstream project is hosted in a Git repository without an official tarball release, you can generate
its orig tarball from the git repository for use by the Debian source package. Execute “git deborig”from
the root of the checked-out source tree.

This is basically for -1 revisions.

13.6 dpkg-source -b
The “dpkg-source -b”command packs the upstream source tree into the Debian source package.

It expects a series of patches in the debian/patches/ directory and their application sequence in
debian/patches/series.

It is compatible with dquilt (see “第 4.4 节”) operations and understands the patch application status
from the existence of .pc/applied-patches.

The dpkg-buildpackage command invokes “dpkg-source -b”.

13.7 dpkg-source -x
The “dpkg-source -x”command extracts the source tree and applies the patches in the debian/patches/
directory using the sequence specified in debian/patches/series to the upstream source tree. It also
adds .pc/applied-patches. (See “第 11.6 节”.)

The “dpkg-source -x --skip-patches”command extracts source tree only. It doesn’t add .pc/applied-
patches. (See “第 11.5 节”.)

Both extracted source trees are ready for building Debian binary packages with dpkg-buildpackage,
dbuild, sbuild, etc..

13.8 debc
您应该使用 debc 命令安装生成的软件包以在本地对齐进行测试。

$ debc package_version-rev_arch.changes

13.9 piuparts
您应该使用 piuparts 命令安装生成的软件包以自动进行测试。

$ sudo piuparts package_version-rev_arch.changes

81

CHAPTER 13. 工具的使用 13.10. BTS

注意

这是一个非常慢的过程，因为它需要访问远程 APT 软件包仓库。

13.10 bts
After uploading the package, you will receive bug reports. It is an important duty of a package main-
tainer to manage these bugs properly, as described in “5.8. Handling bugs”of the “Debian Developer’s
Reference”.

bts 命令是一个用以处理“Debian 缺陷追踪系统”上的错误的便捷工具。

$ bts severity 123123 wishlist , tags -1 pending

82

https://www.debian.org/doc/manuals/developers-reference/pkgs.html#bug-handling
https://www.debian.org/Bugs/

Chapter 14

更多示例

There is an old Latin saying: “fabricando fit faber”(“practice makes perfect”).
强烈建议使用简单的包来练习和试验 Debian 打包的所有步骤。本章为您的练习提供了许多上游案例。
This should also serve as introductory examples for many programming topics.

• 使用 POSIX shell，Python3 和 C 编程。

• 使用图标图形创建桌面 GUI 程序启动器的方法。

• Conversion of a command from CLI to GUI.

• Conversion of a program to use gettext for internationalization and localization: POSIX shell and
C sources.

• 构建系统概述：Makefile、Python、Autotools 以及 CMake。

请注意，Debian 对以下事项非常注意：

• 自由软件

• 操作系统的稳定性与安全性

• 通过以下方式以实现通用操作系统：

– 上游源码的自由选择，

– CPU 架构的自由选择，以及

– 用户界面语言的自由选择。

在“第 5 章”中介绍的典型打包示例是本章节的先决条件。
在以下数小节中，有些细节被刻意模糊。请尝试阅读相关文件，并且尝试自行厘清它们。

提示

The best source of a packaging example is the current Debian archive itself.
Please use the “Debian Code Search”service to find pertinent examples.

14.1 挑选最好的模板

Here is an example of creating a simple Debian package from a zero-content source in an empty directory.
This is a good way to obtain all the template files without cluttering the upstream source tree you are

working on.
让我们假设这个空目录为 debhello-0.1。

83

https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Internationalization_and_localization
https://codesearch.debian.net/

CHAPTER 14. 更多示例 14.1. 挑选最好的模板

$ mkdir debhello-0.1
$ tree
.
+-- debhello-0.1

2 directories, 0 files

Let’s generate the maximum amount of template files.
Let’s also use the “-p debhello -t -u 0.1 -r 1”options to create the missing upstream tarball with default

-x3 and T options.

$ cd /path/to/debhello-0.1
$ debmake -p debhello -t -u 0.1 -r 1
I: set parameters
...

我们来检查一下自动产生的模板文件。

$ cd /path/to
$ tree
.
+-- debhello-0.1
| +-- debian
| +-- README.Debian
| +-- README.source
| +-- changelog
| +-- clean
| +-- control
| +-- copyright
| +-- debhello.bug-control.ex
| +-- debhello.bug-presubj.ex
| +-- debhello.bug-script.ex
| +-- debhello.conffiles.ex
| +-- debhello.cron.d.ex
| +-- debhello.cron.daily.ex
| +-- debhello.cron.hourly.ex
| +-- debhello.cron.monthly.ex
| +-- debhello.cron.weekly.ex
| +-- debhello.default.ex
| +-- debhello.emacsen-install.ex
| +-- debhello.emacsen-remove.ex
| +-- debhello.emacsen-startup.ex
| +-- debhello.lintian-overrides.ex
| +-- debhello.service.ex
| +-- debhello.tmpfile.ex
| +-- dirs
| +-- gbp.conf
| +-- install
| +-- links
| +-- maintscript.ex
| +-- manpage.1.ex
| +-- manpage.asciidoc.ex
| +-- manpage.md.ex
| +-- manpage.sgml.ex
| +-- manpage.xml.ex
| +-- patches
| | +-- series
| +-- postinst.ex
| +-- postrm.ex
| +-- preinst.ex
| +-- prerm.ex
| +-- rules
| +-- salsa-ci.yml
| +-- source

84

CHAPTER 14. 更多示例 14.2. 无 MAKEFILE（SHELL，命令行界面）

| | +-- format
| | +-- lintian-overrides.ex
| | +-- local-options.ex
| | +-- local-patch-header.ex
| | +-- options.ex
| | +-- patch-header.ex
| +-- tests
| | +-- control
| +-- upstream
| | +-- metadata
| +-- watch
+-- debhello-0.1.tar.xz
+-- debhello_0.1.orig.tar.xz -> debhello-0.1.tar.xz

7 directories, 50 files

现在，您可以复制 debhello-0.1/debian/ 目录下所有生成的模板文件到您的软件包中。

14.2 无 Makefile（shell，命令行界面）

此处是一个从 POSIX shell 命令行界面程序创建简单的 Debian 软件包的示例，我们假设它没有使用任
何构建系统。

让我们假设上游的源码包为 debhello-0.2.tar.gz。
此类源码不具有自动化方法，所以必须手动安装文件。
例如：

$ tar -xzmf debhello-0.2.tar.gz
$ cd debhello-0.2
$ sudo cp scripts/hello /bin/hello
...

Let’s get this source as tar file from a remote site and make it the Debian package.
下载 debhello-0.2.tar.gz

$ wget http://www.example.org/download/debhello-0.2.tar.gz
...
$ tar -xzmf debhello-0.2.tar.gz
$ tree
.
+-- debhello-0.2
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-0.2.tar.gz

5 directories, 6 files

这里的 POSIX shell 脚本 hello 非常的简单。
hello（v=0.2）

$ cat debhello-0.2/scripts/hello
#!/bin/sh -e
echo "Hello from the shell!"
echo ""
echo -n "Type Enter to exit this program: "
read X

此处的 hello.desktop 支持“桌面项（Desktop Entry）规范”。
hello.desktop（v=0.2）

85

https://www.freedesktop.org/wiki/Specifications/desktop-entry-spec/

CHAPTER 14. 更多示例 14.2. 无 MAKEFILE（SHELL，命令行界面）

$ cat debhello-0.2/data/hello.desktop
[Desktop Entry]
Name=Hello
Name[fr]=Bonjour
Comment=Greetings
Comment[fr]=Salutations
Type=Application
Keywords=hello
Exec=hello
Terminal=true
Icon=hello.png
Categories=Utility;

此处的 hello.png 是图标的图像文件。
让我们使用 debmake 命令来打包。这里使用 -b’:sh’ 选项来指明生成的二进制包是一个 shell 脚本。

$ cd /path/to/debhello-0.2
$ debmake -b':sh' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="0.2", rev="1"
I: *** start packaging in "debhello-0.2". ***
I: provide debhello_0.2.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-0.2.tar.gz debhello_0.2.orig.tar.gz
I: pwd = "/path/to/debhello-0.2"
I: parse binary package settings: :sh
I: binary package=debhello Type=script / Arch=all M-A=foreign
I: analyze the source tree
I: build_type = Unknown
I: scan source for copyright+license text and file extensions
I: 25 %, ext = md
...

让我们来检查一下自动产生的模板文件。
执行基本的 debmake 命令后的源码树。（v=0.2）

$ cd /path/to
$ tree
.
+-- debhello-0.2
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- debian
| | +-- README.Debian
| | +-- README.source
| | +-- changelog
| | +-- clean
| | +-- control
| | +-- copyright
| | +-- dirs
| | +-- gbp.conf
| | +-- install
| | +-- links
| | +-- patches
| | | +-- series
| | +-- rules
| | +-- salsa-ci.yml
| | +-- source
| | | +-- format
| | | +-- local-options.ex

86

CHAPTER 14. 更多示例 14.2. 无 MAKEFILE（SHELL，命令行界面）

| | | +-- local-patch-header.ex
| | +-- tests
| | | +-- control
| | +-- upstream
| | | +-- metadata
| | +-- watch
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-0.2.tar.gz
+-- debhello_0.2.orig.tar.gz -> debhello-0.2.tar.gz

10 directories, 26 files

debian/rules（模板文件，v=0.2）：

$ cd /path/to/debhello-0.2
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1

%:
dh $@

这基本上是带有 dh 命令的标准 debian/rules 文件。因为这是个脚本软件包，所以这个 debian/rules
模板文件没有与构建标记（build flag）相关的内容。

debian/control（模板文件，v=0.2）：

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.0
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
${misc:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

Since this is the shell script package, the debmake command sets “Architecture: all”and “Multi-
Arch: foreign”. Also, it sets required substvar parameters as “Depends: ${misc:Depends}”. These
are explained in “第 6 章”.

因为这个上游源码缺少上游的 Makefile，所以这个功能需要由维护者提供。这个上游源码仅包含脚
本文件和数据文件，没有 C 的源码文件，因此 构建（build）的过程可以被跳过，但是需要实现 安装

（install）的过程。对于这种情况，通过添加 debian/install 和 debian/manpages 文件可以很好地实现
这一功能，且不会使 debian/rules 文件变得复杂。

作为维护者，我们要把这个 Debian 软件包做得更好。
debian/rules（维护者版本，v=0.2）：

$ cd /path/to/debhello-0.2
$ vim debian/rules
... hack, hack, hack, ...

87

CHAPTER 14. 更多示例 14.2. 无 MAKEFILE（SHELL，命令行界面）

$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1

%:
dh $@

debian/control（维护者版本，v=0.2）：

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
${misc:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

警告

If you leave “Section: unknown”in the template debian/control file unchanged,
the lintian error may cause a build failure.

debian/install（维护者版本，v=0.2）：

$ vim debian/install
... hack, hack, hack, ...
$ cat debian/install
data/hello.desktop usr/share/applications
data/hello.png usr/share/pixmaps
scripts/hello usr/bin

debian/manpages（维护者版本，v=0.2）：

$ vim debian/manpages
... hack, hack, hack, ...
$ cat debian/manpages
man/hello.1

在 debian/ 目录下还有一些其它的模板文件。它们也需要进行更新。
debian/ 目录下的模板文件。（v=0.2）：

$ rm -f debian/clean debian/dirs debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian

88

CHAPTER 14. 更多示例 14.2. 无 MAKEFILE（SHELL，命令行界面）

+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- install
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 13 files

您可以在此源代码树中使用 debuild 命令（或其等效命令）创建非原生的 Debian 软件包。如下所示，
该命令的输出非常详细，并且解释了它所做的事。

$ cd /path/to/debhello-0.2
$ debuild
dpkg-buildpackage -us -uc -ui -i
dpkg-buildpackage: info: source package debhello
dpkg-buildpackage: info: source version 0.2-1
dpkg-buildpackage: info: source distribution unstable
dpkg-buildpackage: info: source changed by Osamu Aoki <osamu@debian.org>
dpkg-source -i --before-build .
dpkg-buildpackage: info: host architecture amd64
debian/rules clean
dh clean

dh_clean
rm -f debian/debhelper-build-stamp

...
debian/rules binary
dh binary

dh_update_autotools_config
dh_autoreconf
create-stamp debian/debhelper-build-stamp
dh_prep

rm -f -- debian/debhello.substvars
rm -fr -- debian/.debhelper/generated/debhello/ debian/debhello/ debi...

dh_auto_install --destdir=debian/debhello/
...
Finished running lintian.

现在我们来看看成果如何。
通过 debuild 生成的第 0.2 版的 debhello 文件：

$ cd /path/to
$ tree -FL 1
./
+-- debhello-0.2/
+-- debhello-0.2.tar.gz
+-- debhello_0.2-1.debian.tar.xz
+-- debhello_0.2-1.dsc
+-- debhello_0.2-1_all.deb
+-- debhello_0.2-1_amd64.build
+-- debhello_0.2-1_amd64.buildinfo
+-- debhello_0.2-1_amd64.changes
+-- debhello_0.2.orig.tar.gz -> debhello-0.2.tar.gz

2 directories, 8 files

89

CHAPTER 14. 更多示例 14.2. 无 MAKEFILE（SHELL，命令行界面）

您可以看见生成的全部文件。

• debhello_0.2.orig.tar.gz 是指向上游源码包的符号链接。

• debhello_0.2-1.debian.tar.xz 包含了维护者生成的内容。

• debhello_0.2-1.dsc 是 Debian 源码包的元数据文件。

• The debhello_0.2-1_all.deb 是 Debian 二进制软件包。

• debhello_0.2-1_amd64.build 是 Debian 二进制软件包。

• debhello_0.2-1_amd64.buildinfo 文件是由 dpkg-genbuildinfo(1) 自动生成的元文件。

• debhello_0.2-1_amd64.changes 是 Debian 二进制软件包的元数据文件。

debhello_0.2-1.debian.tar.xz 包含了 Debian 对上游源代码的修改，具体如下所示。
压缩过的归档文件 debhello_0.2-1.debian.tar.xz 中的内容物：

$ tar -tzf debhello-0.2.tar.gz
debhello-0.2/
debhello-0.2/data/
debhello-0.2/data/hello.desktop
debhello-0.2/data/hello.png
debhello-0.2/man/
debhello-0.2/man/hello.1
debhello-0.2/scripts/
debhello-0.2/scripts/hello
debhello-0.2/README.md
$ tar --xz -tf debhello_0.2-1.debian.tar.xz
debian/
debian/README.Debian
debian/changelog
debian/control
debian/copyright
debian/gbp.conf
debian/install
debian/manpages
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

debhello_0.2-1_amd64.deb 包含了将要安装至系统中的文件，如下所示。
debhello_0.2-1_all.deb 二进制软件包中的内容：

$ dpkg -c debhello_0.2-1_all.deb
drwxr-xr-x root/root/
drwxr-xr-x root/root/usr/
drwxr-xr-x root/root/usr/bin/
-rwxr-xr-x root/root/usr/bin/hello
drwxr-xr-x root/root/usr/share/
drwxr-xr-x root/root/usr/share/applications/
-rw-r--r-- root/root/usr/share/applications/hello.desktop
drwxr-xr-x root/root/usr/share/doc/
drwxr-xr-x root/root/usr/share/doc/debhello/
-rw-r--r-- root/root/usr/share/doc/debhello/README.Debian
-rw-r--r-- root/root/usr/share/doc/debhello/changelog.Debian.gz
-rw-r--r-- root/root/usr/share/doc/debhello/copyright
drwxr-xr-x root/root/usr/share/man/
drwxr-xr-x root/root/usr/share/man/man1/

90

CHAPTER 14. 更多示例 14.3. MAKEFILE（SHELL，命令行界面）

-rw-r--r-- root/root/usr/share/man/man1/hello.1.gz
drwxr-xr-x root/root/usr/share/pixmaps/
-rw-r--r-- root/root/usr/share/pixmaps/hello.png

此处是生成的 debhello_0.2-1_all.deb 的依赖项列表。
debhello_0.2-1_all.deb 的依赖项列表：

$ dpkg -f debhello_0.2-1_all.deb pre-depends \
depends recommends conflicts breaks

(No extra dependency packages required since this is a POSIX shell program.)

注意

If you wish to replace upstream provided PNG file data/hello.png with main-
tainer provided one debian/hello.png, editing debian/install isn’t enough. When
you add debian/hello.png, you need to add a line “include-binaries”to de-
bian/source/options since PNG is a binary file. See dpkg-source(1).

14.3 Makefile（shell，命令行界面）

下面是从 POSIX shell 命令行界面程序创建简单的 Debian 软件包的示例，我们假设它使用 Makefile 作
为构建系统。

让我们假设上游的源码包为 debhello-1.0.tar.gz。
这一类源代码设计可以用这样的方式安装成为非系统文件：

$ tar -xzmf debhello-1.0.tar.gz
$ cd debhello-1.0
$ make install

Debian packaging requires changing this “make install”process to install files to the target system
image location instead of the normal location under /usr/local.

让我们取得源码并制作 Debian 软件包。
下载 debhello-1.0.tar.gz

$ wget http://www.example.org/download/debhello-1.0.tar.gz
...
$ tar -xzmf debhello-1.0.tar.gz
$ tree
.
+-- debhello-1.0
| +-- Makefile
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-1.0.tar.gz

5 directories, 7 files

这里的 Makefile 正确使用 $(DESTDIR) 和 $(prefix)。其他的所有文件都和“第 14.2 节”中的一样，
并且大多数的打包工作也都一样。

Makefile（v=1.0）

$ cat debhello-1.0/Makefile
prefix = /usr/local

91

CHAPTER 14. 更多示例 14.3. MAKEFILE（SHELL，命令行界面）

all:
: # do nothing

install:
install -D scripts/hello \

$(DESTDIR)$(prefix)/bin/hello
install -m 644 -D data/hello.desktop \

$(DESTDIR)$(prefix)/share/applications/hello.desktop
install -m 644 -D data/hello.png \

$(DESTDIR)$(prefix)/share/pixmaps/hello.png
install -m 644 -D man/hello.1 \

$(DESTDIR)$(prefix)/share/man/man1/hello.1

clean:
: # do nothing

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/man1/hello.1

.PHONY: all install clean distclean uninstall

让我们使用 debmake 命令来打包。这里使用 -b’:sh’ 选项来指明生成的二进制包是一个 shell 脚本。

$ cd /path/to/debhello-1.0
$ debmake -b':sh' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.0", rev="1"
I: *** start packaging in "debhello-1.0". ***
I: provide debhello_1.0.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.0.tar.gz debhello_1.0.orig.tar.gz
I: pwd = "/path/to/debhello-1.0"
I: parse binary package settings: :sh
I: binary package=debhello Type=script / Arch=all M-A=foreign
I: analyze the source tree
I: build_type = make
I: scan source for copyright+license text and file extensions
I: 25 %, ext = md
...

让我们来检查一下自动产生的模板文件。
debian/rules（模板文件，v=1.0）：

$ cd /path/to/debhello-1.0
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1

%:
dh $@

#override_dh_auto_install:
dh_auto_install -- prefix=/usr

#override_dh_install:
dh_install --list-missing -X.pyc -X.pyo

92

CHAPTER 14. 更多示例 14.4. PYPROJECT.TOML (PYTHON3, CLI)

作为维护者，我们要把这个 Debian 软件包做得更好。
debian/rules（维护者版本，v=1.0）：

$ cd /path/to/debhello-1.0
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1

%:
dh $@

override_dh_auto_install:
dh_auto_install -- prefix=/usr

因为上游源码含有正确的上游 Makefile 文件，所以没有必要再去创建 debian/install 和 debian/manpages
文件。

debian/control 文件和“第 14.2 节”中的完全一致。
在 debian/ 目录下还有一些其它的模板文件。它们也需要进行更新。
debian/ 目录下的模板文件。（v=1.0）：

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 11 files

其余的打包操作基本上和“第 14.2 节”中的相同。

14.4 pyproject.toml (Python3, CLI)
Here is an example of creating a simple Debian package from a Python3 CLI program using pypro-
ject.toml.

让我们取得源码并制作 Debian 软件包。
下载 debhello-1.1.tar.gz

$ wget http://www.example.org/download/debhello-1.1.tar.gz
...
$ tar -xzmf debhello-1.1.tar.gz
$ tree
.
+-- debhello-1.1
| +-- LICENSE
| +-- MANIFEST.in
| +-- README.md
| +-- data

93

CHAPTER 14. 更多示例 14.4. PYPROJECT.TOML (PYTHON3, CLI)

| | +-- hello.desktop
| | +-- hello.png
| +-- manpages
| | +-- hello.1
| +-- pyproject.toml
| +-- src
| +-- debhello
| +-- __init__.py
| +-- main.py
+-- debhello-1.1.tar.gz

6 directories, 10 files

Here, the content of this debhello source tree as follows.
pyproject.toml (v=1.1) — PEP 517 configuration

$ cat debhello-1.1/pyproject.toml
[build-system]
requires = ["setuptools >= 61.0"] # REQUIRED if [build-system] table is used...
build-backend = "setuptools.build_meta" # If not defined, then legacy behavi...

[project]
name = "debhello"
version = "1.1.0"
description = "Hello Python (CLI)"
readme = {file = "README.md", content-type = "text/markdown"}
requires-python = ">=3.12"
license = {file = "LICENSE.txt"}
keywords = ["debhello"]
authors = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
maintainers = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",

"Topic :: System :: Archiving :: Packaging",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",
Others
"Operating System :: POSIX :: Linux",
"Natural Language :: English",

]
[project.urls]
"Homepage" = "https://salsa.debian.org/debian/debmake"
"Bug Reports" = "https://salsa.debian.org/debian/debmake/issues"
"Source" = "https://salsa.debian.org/debian/debmake"
[project.scripts]
hello = "debhello.main:main"
[tool.setuptools]
package-dir = {"" = "src"}
packages = ["debhello"]
include-package-data = true

MANIFEST.in (v=1.1) — for tar-ball.

$ cat debhello-1.1/MANIFEST.in
include data/*
include manpages/*

src/debhello/__init__.py (v=1.1)

94

CHAPTER 14. 更多示例 14.4. PYPROJECT.TOML (PYTHON3, CLI)

$ cat debhello-1.1/src/debhello/__init__.py
"""
debhello program (CLI)
"""

src/debhello/main.py (v=1.1) — command entry point
$ cat debhello-1.1/src/debhello/main.py
"""
debhello program
"""

import sys

__version__ = '1.1.0'

def main(): # needed for console script
print(' ========== Hello Python3 ==========')
print('argv = {}'.format(sys.argv))
print('version = {}'.format(debhello.__version__))
return

if __name__ == "__main__":
sys.exit(main())

让我们使用 debmake 命令来打包。这里使用 -b’:py3’ 选项来指明生成的二进制包包含 Python3 脚本
和模块文件。

$ cd /path/to/debhello-1.1
$ debmake -b':py3' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.1", rev="1"
I: *** start packaging in "debhello-1.1". ***
I: provide debhello_1.1.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.1.tar.gz debhello_1.1.orig.tar.gz
I: pwd = "/path/to/debhello-1.1"
I: parse binary package settings: :py3
I: binary package=debhello Type=python3 / Arch=all M-A=foreign
I: analyze the source tree
W: setuptools build system.
I: build_type = Python (pyproject.toml: PEP-518, PEP-621, PEP-660)
I: scan source for copyright+license text and file extensions
...

让我们来检查一下自动产生的模板文件。
debian/rules（模板文件，v=1.1）：

$ cd /path/to/debhello-1.1
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1

%:
dh $@ --with python3 --buildsystem=pybuild

这基本上是带有 dh 命令的标准 debian/rules 文件。
The use of the “--with python3”option invokes dh_python3 to calculate Python dependencies, add

maintainer scripts to byte compiled files, etc. See dh_python3(1).
The use of the “--buildsystem=pybuild”option invokes various build systems for requested Python

versions in order to build modules and extensions. See pybuild(1).
debian/control（模板文件，v=1.1）：

95

CHAPTER 14. 更多示例 14.4. PYPROJECT.TOML (PYTHON3, CLI)

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
dh-python,
pybuild-plugin-pyproject,
python3-all,
python3-setuptools,
Standards-Version: 4.7.0
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
${misc:Depends},
${python3:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

Since this is the Python3 package, the debmake command sets “Architecture: all”and “Multi-
Arch: foreign”. Also, it sets required substvar parameters as “Depends: ${python3:Depends},
${misc:Depends}”. These are explained in “第 6 章”.

作为维护者，我们要把这个 Debian 软件包做得更好。
debian/rules（维护者版本，v=1.1）：

$ cd /path/to/debhello-1.1
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export PYBUILD_NAME=debhello
export PYBUILD_VERBOSE=1
export DH_VERBOSE=1

%:
dh $@ --with python3 --buildsystem=pybuild

debian/control（维护者版本，v=1.1）：

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
pybuild-plugin-pyproject,
python3-all,
Standards-Version: 4.6.2
Rules-Requires-Root: no
Vcs-Browser: https://salsa.debian.org/debian/debmake-doc
Vcs-Git: https://salsa.debian.org/debian/debmake-doc.git
Homepage: https://salsa.debian.org/debian/debmake-doc

96

CHAPTER 14. 更多示例 14.4. PYPROJECT.TOML (PYTHON3, CLI)

Package: debhello
Architecture: all
Depends:
${misc:Depends},
${python3:Depends},
Description: Simple packaging example for debmake
This is an example package to demonstrate Debian packaging using
the debmake command.
.
The generated Debian package uses the dh command offered by the
debhelper package and the dpkg source format `3.0 (quilt)'.

在 debian/ 目录下还有一些其它的模板文件。它们也需要进行更新。
This debhello command comes with the upstream-provided manpage and desktop file but the up-

stream pyproject.toml doesn’t install them. So you need to update debian/install and debian/manpages
as follows:

debian/install (maintainer version, v=1.1):

$ vim debian/copyright
... hack, hack, hack, ...
$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2024 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

debian/manpages (maintainer version, v=1.1):

$ vim debian/install
... hack, hack, hack, ...
$ cat debian/install
data/hello.desktop usr/share/applications
data/hello.png usr/share/pixmaps

其余的打包工作与“第 14.3 节”中的几乎一致。
debian/ 目录下的模板文件。（v=1.1）：

$ rm -f debian/clean debian/dirs debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog

97

CHAPTER 14. 更多示例 14.5. MAKEFILE（SHELL，图形界面）

+-- control
+-- copyright
+-- gbp.conf
+-- install
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 13 files

此处是生成的 debhello_1.1-1_all.deb 包的依赖项列表。
debhello_1.1-1_all.deb 的依赖项列表：

$ dpkg -f debhello_1.1-1_all.deb pre-depends \
depends recommends conflicts breaks

Depends: python3:any

14.5 Makefile（shell，图形界面）

此处是一个从 POSIX shell 图形界面程序构建简单的 Debian 软件包的示例，我们假设程序使用 Makefile
作为构建系统。

上游是基于“第 14.3 节”中的源代码，并带有增强的图形界面支持。
让我们假设上游的源码包为 debhello-1.2.tar.gz。
让我们取得源码并制作 Debian 软件包。
下载 debhello-1.2.tar.gz

$ wget http://www.example.org/download/debhello-1.2.tar.gz
...
$ tar -xzmf debhello-1.2.tar.gz
$ tree
.
+-- debhello-1.2
| +-- Makefile
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-1.2.tar.gz

5 directories, 7 files

此处的 hello 已经被重写以便使用 zenity 命令来使其成为 GTK+ 图形界面程序。
hello（v=1.2）

$ cat debhello-1.2/scripts/hello
#!/bin/sh -e
zenity --info --title "hello" --text "Hello from the shell!"

这里，作为图形界面程序，桌面文件被更新为 Terminal=false。
hello.desktop（v=1.2）

98

CHAPTER 14. 更多示例 14.5. MAKEFILE（SHELL，图形界面）

$ cat debhello-1.2/data/hello.desktop
[Desktop Entry]
Name=Hello
Name[fr]=Bonjour
Comment=Greetings
Comment[fr]=Salutations
Type=Application
Keywords=hello
Exec=hello
Terminal=false
Icon=hello.png
Categories=Utility;

其余的所有文件都与“第 14.3 节”中的一致。
Let’s package this with the debmake command. Here, the “-b’:sh’”option is used to specify that the

generated binary package is a shell script.

$ cd /path/to/debhello-1.2
$ debmake -b':sh' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.2", rev="1"
I: *** start packaging in "debhello-1.2". ***
I: provide debhello_1.2.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.2.tar.gz debhello_1.2.orig.tar.gz
I: pwd = "/path/to/debhello-1.2"
I: parse binary package settings: :sh
I: binary package=debhello Type=script / Arch=all M-A=foreign
I: analyze the source tree
I: build_type = make
I: scan source for copyright+license text and file extensions
I: 25 %, ext = md
...

让我们来检查一下自动产生的模板文件。
debian/control（模板文件，v=1.2）：

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.0
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
${misc:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

作为维护者，我们要把这个 Debian 软件包做得更好。
debian/control（维护者版本，v=1.2）：

99

CHAPTER 14. 更多示例 14.6. PYPROJECT.TOML（PYTHON3, 图形界面）

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
zenity,
${misc:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

请注意，这里需要手动添加 zenity 依赖。
debian/rules 文件与“第 14.3 节”中的完全一致。
在 debian/ 目录下还有一些其它的模板文件。它们也需要进行更新。
debian/ 目录下的模板文件。（v=1.2）：

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 11 files

其余的打包工作与“第 14.3 节”中的几乎一致。
此处是 debhello_1.2-1_all.deb 的依赖项列表。
debhello_1.2-1_all.deb 的依赖项列表：

$ dpkg -f debhello_1.2-1_all.deb pre-depends \
depends recommends conflicts breaks

Depends: zenity

14.6 pyproject.toml（Python3, 图形界面）

Here is an example of creating a simple Debian package from a Python3 GUI program using pypro-
ject.toml.

100

CHAPTER 14. 更多示例 14.6. PYPROJECT.TOML（PYTHON3, 图形界面）

让我们假设上游源码包为 debhello-1.3.tar.gz。
让我们取得源码并制作 Debian 软件包。
下载 debhello-1.3.tar.gz

$ wget http://www.example.org/download/debhello-1.3.tar.gz
...
$ tar -xzmf debhello-1.3.tar.gz
$ tree
.
+-- debhello-1.3
| +-- LICENSE
| +-- MANIFEST.in
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- manpages
| | +-- hello.1
| +-- pyproject.toml
| +-- src
| +-- debhello
| +-- __init__.py
| +-- main.py
+-- debhello-1.3.tar.gz

6 directories, 10 files

Here, the content of this debhello source tree as follows.
pyproject.toml (v=1.3) — PEP 517 configuration

$ cat debhello-1.3/pyproject.toml
[build-system]
requires = ["setuptools >= 61.0"] # REQUIRED if [build-system] table is used...
build-backend = "setuptools.build_meta" # If not defined, then legacy behavi...

[project]
name = "debhello"
version = "1.3.0"
description = "Hello Python (GUI)"
readme = {file = "README.md", content-type = "text/markdown"}
requires-python = ">=3.12"
license = {file = "LICENSE.txt"}
keywords = ["debhello"]
authors = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
maintainers = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",

"Topic :: System :: Archiving :: Packaging",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",
Others
"Operating System :: POSIX :: Linux",
"Natural Language :: English",

]
[project.urls]
"Homepage" = "https://salsa.debian.org/debian/debmake"
"Bug Reports" = "https://salsa.debian.org/debian/debmake/issues"
"Source" = "https://salsa.debian.org/debian/debmake"

101

CHAPTER 14. 更多示例 14.6. PYPROJECT.TOML（PYTHON3, 图形界面）

[project.scripts]
hello = "debhello.main:main"
[tool.setuptools]
package-dir = {"" = "src"}
packages = ["debhello"]
include-package-data = true

MANIFEST.in (v=1.3) — for tar-ball.

$ cat debhello-1.3/MANIFEST.in
include data/*
include manpages/*

src/debhello/__init__.py (v=1.3)

$ cat debhello-1.3/src/debhello/__init__.py
"""
debhello program (GUI)
"""

src/debhello/main.py (v=1.3) — command entry point

$ cat debhello-1.3/src/debhello/main.py
#!/usr/bin/python3
from gi.repository import Gtk

__version__ = '1.3.0'

class TopWindow(Gtk.Window):

def __init__(self):
Gtk.Window.__init__(self)
self.title = "Hello World!"
self.counter = 0
self.border_width = 10
self.set_default_size(400, 100)
self.set_position(Gtk.WindowPosition.CENTER)
self.button = Gtk.Button(label="Click me!")
self.button.connect("clicked", self.on_button_clicked)
self.add(self.button)
self.connect("delete-event", self.on_window_destroy)

def on_window_destroy(self, *args):
Gtk.main_quit(*args)

def on_button_clicked(self, widget):
self.counter += 1
widget.set_label("Hello, World!\nClick count = %i" % self.counter)

def main():
window = TopWindow()
window.show_all()
Gtk.main()

if __name__ == '__main__':
main()

让我们使用 debmake 命令来打包。这里使用 -b’:py3’ 选项来指明生成的二进制包包含 Python3 脚本
和模块文件。

$ cd /path/to/debhello-1.3
$ debmake -b':py3' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.3", rev="1"

102

CHAPTER 14. 更多示例 14.6. PYPROJECT.TOML（PYTHON3, 图形界面）

I: *** start packaging in "debhello-1.3". ***
I: provide debhello_1.3.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.3.tar.gz debhello_1.3.orig.tar.gz
I: pwd = "/path/to/debhello-1.3"
I: parse binary package settings: :py3
I: binary package=debhello Type=python3 / Arch=all M-A=foreign
I: analyze the source tree
W: setuptools build system.
I: build_type = Python (pyproject.toml: PEP-518, PEP-621, PEP-660)
I: scan source for copyright+license text and file extensions
...

The result is practically the same as in “第 14.4 节”.
作为维护者，我们要把这个 Debian 软件包做得更好。
debian/rules（维护者版本，v=1.3）：

$ cd /path/to/debhello-1.3
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export PYBUILD_NAME=debhello
export PYBUILD_VERBOSE=1
export DH_VERBOSE=1

%:
dh $@ --with python3 --buildsystem=pybuild

debian/control（维护者版本，v=1.3）：

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
pybuild-plugin-pyproject,
python3-all,
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
gir1.2-gtk-3.0,
python3-gi,
${misc:Depends},
${python3:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

请注意，此处需要手动添加 python3-gi 和 gir1.2-gtk-3.0 依赖。
The rest of the packaging activities are practically the same as in <pyproject>>.
此处是 debhello_1.3-1_all.deb 的依赖项列表。
debhello_1.3-1_all.deb 的依赖项列表：

$ dpkg -f debhello_1.3-1_all.deb pre-depends \
depends recommends conflicts breaks

103

CHAPTER 14. 更多示例 14.7. MAKEFILE（单个二进制软件包）

Depends: gir1.2-gtk-3.0, python3-gi, python3:any

14.7 Makefile（单个二进制软件包）

这里给出了从简单的 C 语言源代码创建简单的 Debian 软件包的例子，并假设上游使用了 Makefile 作为
构建系统。

此处的上游源代码是“第 5 章”中的源代码的增强版本。它带有手册页、桌面文件和桌面图标。并且为
了更加贴合实际，它还有一个外部库文件 libm。

让我们假设上游源码包为 debhello-1.4.tar.gz。
这一类源代码设计可以用这样的方式安装成为非系统文件：

$ tar -xzmf debhello-1.4.tar.gz
$ cd debhello-1.4
$ make
$ make install

Debian packaging requires changing this “make install”process to install files into the target system
image location instead of the normal location under /usr/local.

让我们取得源码并制作 Debian 软件包。
下载 debhello-1.4.tar.gz

$ wget http://www.example.org/download/debhello-1.4.tar.gz
...
$ tar -xzmf debhello-1.4.tar.gz
$ tree
.
+-- debhello-1.4
| +-- LICENSE
| +-- Makefile
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- src
| +-- config.h
| +-- hello.c
+-- debhello-1.4.tar.gz

5 directories, 9 files

此处的源码如下所示。
src/hello.c（v=1.4）：

$ cat debhello-1.4/src/hello.c
#include "config.h"
#include <math.h>
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
return 0;

}

src/config.h（v=1.4）：

$ cat debhello-1.4/Makefile
prefix = /usr/local

all: src/hello

104

CHAPTER 14. 更多示例 14.7. MAKEFILE（单个二进制软件包）

src/hello: src/hello.c
$(CC) $(CPPFLAGS) $(CFLAGS) $(LDFLAGS) -o $@ $^ -lm

install: src/hello
install -D src/hello \

$(DESTDIR)$(prefix)/bin/hello
install -m 644 -D data/hello.desktop \

$(DESTDIR)$(prefix)/share/applications/hello.desktop
install -m 644 -D data/hello.png \

$(DESTDIR)$(prefix)/share/pixmaps/hello.png
install -m 644 -D man/hello.1 \

$(DESTDIR)$(prefix)/share/man/man1/hello.1

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/man1/hello.1

.PHONY: all install clean distclean uninstall

Makefile（v=1.4）：

$ cat debhello-1.4/src/config.h
#define PACKAGE_AUTHOR "Osamu Aoki"

请注意，此 Makefile 含有正确的手册页、桌面文件、桌面图标的 install 对象。
让我们使用 debmake 命令打包。

$ cd /path/to/debhello-1.4
$ debmake -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.4", rev="1"
I: *** start packaging in "debhello-1.4". ***
I: provide debhello_1.4.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.4.tar.gz debhello_1.4.orig.tar.gz
I: pwd = "/path/to/debhello-1.4"
I: parse binary package settings:
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: analyze the source tree
I: build_type = make
I: scan source for copyright+license text and file extensions
I: 33 %, ext = c
...

其余的工作与“第 5.6 节”中的几乎一致。
像“第 5.7 节”中所写的一样，让我们这些维护者来把这个 Debian 软件包做的更好。
If the DEB_BUILD_MAINT_OPTIONS environment variable is not exported in debian/rules, lintian

warns “W: debhello: hardening-no-relro usr/bin/hello”for the linking of libm.
debian/control 文件与“第 5.7 节”中的完全一致，因为 libm 库是 libc6 库的一部分，所以它总是可

获得的（优先级：必需 / Priority: required）。
在 debian/ 目录下还有一些其它的模板文件。它们也需要进行更新。
debian/ 目录下的模板文件。（v=1.4）：

$ rm -f debian/clean debian/dirs debian/links
$ rm -f debian/README.source debian/source/*.ex

105

CHAPTER 14. 更多示例 14.8. MAKEFILE.IN + CONFIGURE（单个二进 …

$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- gbp.conf
+-- install
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 12 files

其余的打包步骤与“第 5.8 节”中的基本一致。
此处是生成的二进制包的依赖项列表。
生成的二进制包的依赖项列表（v=1.4）：

$ dpkg -f debhello-dbgsym_1.4-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 1.4-1)
$ dpkg -f debhello_1.4-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.34)

14.8 Makefile.in + configure（单个二进制软件包）

这里给出了从简单的 C 语言源代码创建简单的 Debian 软件包的例子，并假设上游使用了 Makefile.in 和
configure 作为构建系统。

此处的源码示例是“第 14.7 节”中的源代码的增强版本。它也有一个外部链接库 libm，并且它的源代
码可以使用 configure 脚本进行配置，然后生成相应的 Makefile、src/config.h 文件。

让我们假设上游源码包为 debhello-1.5.tar.gz。
此类型的源码旨在作为非系统文件安装，例如：

$ tar -xzmf debhello-1.5.tar.gz
$ cd debhello-1.5
$./configure --with-math
$ make
$ make install

让我们取得源码并制作 Debian 软件包。
下载 debhello-1.5.tar.gz

$ wget http://www.example.org/download/debhello-1.5.tar.gz
...
$ tar -xzmf debhello-1.5.tar.gz
$ tree
.
+-- debhello-1.5
| +-- LICENSE
| +-- Makefile.in
| +-- README.md
| +-- configure
| +-- data
| | +-- hello.desktop

106

CHAPTER 14. 更多示例 14.8. MAKEFILE.IN + CONFIGURE（单个二进 …

| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- src
| +-- hello.c
+-- debhello-1.5.tar.gz

5 directories, 9 files

此处的源码如下所示。
src/hello.c（v=1.5）：

$ cat debhello-1.5/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
#ifdef WITH_MATH

printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
#else

printf("I can't do MATH!\n");
#endif

return 0;
}

Makefile.in（v=1.5）：

$ cat debhello-1.5/Makefile.in
prefix = @prefix@

all: src/hello

src/hello: src/hello.c
$(CC) @VERBOSE@ \

$(CPPFLAGS) \
$(CFLAGS) \
$(LDFLAGS) \
-o $@ $^ \
@LINKLIB@

install: src/hello
install -D src/hello \

$(DESTDIR)$(prefix)/bin/hello
install -m 644 -D data/hello.desktop \

$(DESTDIR)$(prefix)/share/applications/hello.desktop
install -m 644 -D data/hello.png \

$(DESTDIR)$(prefix)/share/pixmaps/hello.png
install -m 644 -D man/hello.1 \

$(DESTDIR)$(prefix)/share/man/man1/hello.1

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/man1/hello.1

107

CHAPTER 14. 更多示例 14.8. MAKEFILE.IN + CONFIGURE（单个二进 …

.PHONY: all install clean distclean uninstall

configure（v=1.5）：

$ cat debhello-1.5/configure
#!/bin/sh -e
default values
PREFIX="/usr/local"
VERBOSE=""
WITH_MATH="0"
LINKLIB=""
PACKAGE_AUTHOR="John Doe"

parse arguments
while ["${1}" != ""]; do
VAR="${1%=*}" # Drop suffix =*
VAL="${1#*=}" # Drop prefix *=
case "${VAR}" in
--prefix)
PREFIX="${VAL}"
;;

--verbose|-v)
VERBOSE="-v"
;;

--with-math)
WITH_MATH="1"
LINKLIB="-lm"
;;

--author)
PACKAGE_AUTHOR="${VAL}"
;;

*)
echo "W: Unknown argument: ${1}"

esac
shift

done

setup configured Makefile and src/config.h
sed -e "s,@prefix@,${PREFIX}," \

-e "s,@VERBOSE@,${VERBOSE}," \
-e "s,@LINKLIB@,${LINKLIB}," \
<Makefile.in >Makefile

if ["${WITH_MATH}" = 1]; then
echo "#define WITH_MATH" >src/config.h
else
echo "/* not defined: WITH_MATH */" >src/config.h
fi
echo "#define PACKAGE_AUTHOR \"${PACKAGE_AUTHOR}\"" >>src/config.h

Please note that the configure command replaces strings with @… @ in Makefile.in to produce
Makefile and creates src/config.h.

让我们使用 debmake 命令打包。

$ cd /path/to/debhello-1.5
$ debmake -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.5", rev="1"
I: *** start packaging in "debhello-1.5". ***
I: provide debhello_1.5.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.5.tar.gz debhello_1.5.orig.tar.gz
I: pwd = "/path/to/debhello-1.5"

108

CHAPTER 14. 更多示例 14.9. AUTOTOOLS（单个二进制文件）

I: parse binary package settings:
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: analyze the source tree
I: build_type = configure
I: scan source for copyright+license text and file extensions
I: 17 %, ext = in
...

结果与“第 5.6 节”中的相似，但是并不完全一致。
让我们来检查一下自动产生的模板文件。
debian/rules（模板文件，v=1.5）：

$ cd /path/to/debhello-1.5
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@

作为维护者，我们要把这个 Debian 软件包做得更好。
debian/rules（维护者版本，v=1.5）：

$ cd /path/to/debhello-1.5
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

override_dh_auto_configure:
dh_auto_configure -- \

--with-math \
--author="Osamu Aoki"

在 debian/ 目录下还有一些其它的模板文件。它们也需要进行更新。
其余的打包步骤与“第 5.8 节”中的基本一致。

14.9 Autotools（单个二进制文件）

Here is an example of creating a simple Debian package from a simple C source program using Autotools
= Autoconf and Automake (Makefile.am and configure.ac) as its build system.

此种源码通常也带有上游自动生成的 Makefile.in 和 configure 文件。在 autotools-dev 软件包的帮
助下，我们可以按“第 14.8 节”中所介绍的，使用这些文件进行打包。

The better alternative is to regenerate these files using the latest Autoconf and Automake packages
if the upstream provided Makefile.am and configure.ac are compatible with the latest version. This is
advantageous for porting to new CPU architectures, etc. This can be automated by using the “--with
autoreconf”option for the dh command.

让我们假设上游的源码包为 debhello-1.6.tar.gz。
此类型的源码旨在作为非系统文件安装，例如：

$ tar -xzmf debhello-1.6.tar.gz
$ cd debhello-1.6

109

CHAPTER 14. 更多示例 14.9. AUTOTOOLS（单个二进制文件）

$ autoreconf -ivf # optional
$./configure --with-math
$ make
$ make install

让我们取得源码并制作 Debian 软件包。
下载 debhello-1.6.tar.gz

$ wget http://www.example.org/download/debhello-1.6.tar.gz
...
$ tar -xzmf debhello-1.6.tar.gz
$ tree
.
+-- debhello-1.6
| +-- LICENSE
| +-- Makefile.am
| +-- README.md
| +-- configure.ac
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- Makefile.am
| | +-- hello.1
| +-- src
| +-- Makefile.am
| +-- hello.c
+-- debhello-1.6.tar.gz

5 directories, 11 files

此处的源码如下所示。
src/hello.c（v=1.6）：

$ cat debhello-1.6/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
#ifdef WITH_MATH

printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
#else

printf("I can't do MATH!\n");
#endif

return 0;
}

Makefile.am（v=1.6）：

$ cat debhello-1.6/Makefile.am
SUBDIRS = src man
$ cat debhello-1.6/man/Makefile.am
dist_man_MANS = hello.1
$ cat debhello-1.6/src/Makefile.am
bin_PROGRAMS = hello
hello_SOURCES = hello.c

configure.ac（v=1.6）：

$ cat debhello-1.6/configure.ac
-*- Autoconf -*-

110

CHAPTER 14. 更多示例 14.9. AUTOTOOLS（单个二进制文件）

Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello],[2.1],[foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])
AM_INIT_AUTOMAKE([foreign])
Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
echo "Add --with-math option functionality to ./configure"
AC_ARG_WITH([math],
[AS_HELP_STRING([--with-math],
[compile with math library @<:@default=yes@:>@])],

[],
[with_math="yes"]
)

echo "==== withval := \"$withval\""
echo "==== with_math := \"$with_math\""
m4sh if-else construct
AS_IF([test "x$with_math" != "xno"],[
echo "==== Check include: math.h"
AC_CHECK_HEADER(math.h,[],[
AC_MSG_ERROR([Couldn't find math.h.])

])
echo "==== Check library: libm"
AC_SEARCH_LIBS(atan, [m])
#AC_CHECK_LIB(m, atan)
echo "==== Build with LIBS := \"$LIBS\""
AC_DEFINE(WITH_MATH, [1], [Build with the math library])

],[
echo "==== Skip building with math.h."
AH_TEMPLATE(WITH_MATH, [Build without the math library])

])
Checks for programs.
AC_PROG_CC
AC_CONFIG_FILES([Makefile

man/Makefile
src/Makefile])

AC_OUTPUT

提示

Without “foreign”strictness level specified in AM_INIT_AUTOMAKE() as above,
automake defaults to “gnu”strictness level requiring several files in the top-level
directory. See “3.2 Strictness”in the automake document.

让我们使用 debmake 命令打包。

$ cd /path/to/debhello-1.6
$ debmake -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.6", rev="1"
I: *** start packaging in "debhello-1.6". ***
I: provide debhello_1.6.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.6.tar.gz debhello_1.6.orig.tar.gz
I: pwd = "/path/to/debhello-1.6"

111

CHAPTER 14. 更多示例 14.10. CMAKE（单个二进制软件包）

I: parse binary package settings:
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: analyze the source tree
I: build_type = Autotools with autoreconf
I: scan source for copyright+license text and file extensions
I: 33 %, ext = am
...

结果与“第 14.8 节”中的类似，但是并不完全一致。
让我们来检查一下自动产生的模板文件。
debian/rules（模板文件，v=1.6）:

$ cd /path/to/debhello-1.6
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@ --with autoreconf

#override_dh_install:
dh_install --list-missing -X.la -X.pyc -X.pyo

作为维护者，我们要把这个 Debian 软件包做得更好。
debian/rules（维护者版本，v=1.6）：

$ cd /path/to/debhello-1.6
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@ --with autoreconf

override_dh_auto_configure:
dh_auto_configure -- \

--with-math

在 debian/ 目录下还有一些其它的模板文件。它们也需要进行更新。
其余的打包步骤与“第 5.8 节”中的基本一致。

14.10 CMake（单个二进制软件包）

Here is an example of creating a simple Debian package from a simple C source program using CMake
(CMakeLists.txt and some files such as config.h.in) as its build system.

The cmake command generates the Makefile file based on the CMakeLists.txt file and its -D op-
tion. It also configures the file as specified in its configure_file(…) by replacing strings with @… @ and
changing the #cmakedefine … line.

让我们假设上游的源码包为 debhello-1.7.tar.gz。
此类型的源码旨在作为非系统文件安装，例如：

$ tar -xzmf debhello-1.7.tar.gz
$ cd debhello-1.7
$ mkdir obj-x86_64-linux-gnu # for out-of-tree build

112

CHAPTER 14. 更多示例 14.10. CMAKE（单个二进制软件包）

$ cd obj-x86_64-linux-gnu
$ cmake ..
$ make
$ make install

让我们取得源码并制作 Debian 软件包。
下载 debhello-1.7.tar.gz

$ wget http://www.example.org/download/debhello-1.7.tar.gz
...
$ tar -xzmf debhello-1.7.tar.gz
$ tree
.
+-- debhello-1.7
| +-- CMakeLists.txt
| +-- LICENSE
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- CMakeLists.txt
| | +-- hello.1
| +-- src
| +-- CMakeLists.txt
| +-- config.h.in
| +-- hello.c
+-- debhello-1.7.tar.gz

5 directories, 11 files

此处的源码如下所示。
src/hello.c（v=1.7）：

$ cat debhello-1.7/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
#ifdef WITH_MATH

printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
#else

printf("I can't do MATH!\n");
#endif

return 0;
}

src/config.h.in（v=1.7）：

$ cat debhello-1.7/src/config.h.in
/* name of the package author */
#define PACKAGE_AUTHOR "@PACKAGE_AUTHOR@"
/* math library support */
#cmakedefine WITH_MATH

CMakeLists.txt（v=1.7）：

$ cat debhello-1.7/CMakeLists.txt
cmake_minimum_required(VERSION 2.8)
project(debhello)
set(PACKAGE_AUTHOR "Osamu Aoki")

113

CHAPTER 14. 更多示例 14.10. CMAKE（单个二进制软件包）

add_subdirectory(src)
add_subdirectory(man)
$ cat debhello-1.7/man/CMakeLists.txt
install(
FILES ${CMAKE_CURRENT_SOURCE_DIR}/hello.1
DESTINATION share/man/man1

)
$ cat debhello-1.7/src/CMakeLists.txt
Always define HAVE_CONFIG_H
add_definitions(-DHAVE_CONFIG_H)
Interactively define WITH_MATH
option(WITH_MATH "Build with math support" OFF)
#variable_watch(WITH_MATH)
Generate config.h from config.h.in
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/config.h.in"
"${CMAKE_CURRENT_BINARY_DIR}/config.h"

)
include_directories("${CMAKE_CURRENT_BINARY_DIR}")
add_executable(hello hello.c)
install(TARGETS hello
RUNTIME DESTINATION bin

)

让我们使用 debmake 命令打包。

$ cd /path/to/debhello-1.7
$ debmake -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="1.7", rev="1"
I: *** start packaging in "debhello-1.7". ***
I: provide debhello_1.7.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-1.7.tar.gz debhello_1.7.orig.tar.gz
I: pwd = "/path/to/debhello-1.7"
I: parse binary package settings:
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: analyze the source tree
I: build_type = Cmake
I: scan source for copyright+license text and file extensions
I: 33 %, ext = text
...

结果与“第 14.8 节”中的类似，但是并不完全一致。
让我们来检查一下自动产生的模板文件。
debian/rules（模板文件，v=1.7）：

$ cd /path/to/debhello-1.7
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@

#override_dh_auto_configure:
dh_auto_configure -- \
-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_TARGET_MULTIARCH)"

114

CHAPTER 14. 更多示例 14.10. CMAKE（单个二进制软件包）

debian/control（模板文件，v=1.7）：

$ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
cmake,
debhelper-compat (= 13),
Standards-Version: 4.7.0
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/debhello

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

作为维护者，我们要把这个 Debian 软件包做得更好。
debian/rules（维护者版本，v=1.7）：

$ cd /path/to/debhello-1.7
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

override_dh_auto_configure:
dh_auto_configure -- -DWITH-MATH=1

debian/control（维护者版本，v=1.7）：

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
cmake,
debhelper-compat (= 13),
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},

115

CHAPTER 14. 更多示例 14.11. AUTOTOOLS（多个二进制软件包）

${shlibs:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

在 debian/ 目录下还有一些其它的模板文件。它们也需要进行更新。
其余的打包工作与“第 14.8 节”中的近乎一致。

14.11 Autotools（多个二进制软件包）

Here is an example of creating a set of Debian binary packages including the executable package, the
shared library package, the development file package, and the debug symbol package from a simple C
source program using Autotools (Autoconf and Automake, which use Makefile.am and configure.ac as
their input files) as its build system.

Let’s package this in a similar way to “第 14.9 节”.
让我们假设上游源码包为 debhello-2.0.tar.gz。
此类型的源码旨在作为非系统文件安装，例如：

$ tar -xzmf debhello-2.0.tar.gz
$ cd debhello-2.0
$ autoreconf -ivf # optional
$./configure --with-math
$ make
$ make install

让我们取得源码并制作 Debian 软件包。
下载 debhello-2.0.tar.gz

$ wget http://www.example.org/download/debhello-2.0.tar.gz
...
$ tar -xzmf debhello-2.0.tar.gz
$ tree
.
+-- debhello-2.0
| +-- LICENSE
| +-- Makefile.am
| +-- README.md
| +-- configure.ac
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- lib
| | +-- Makefile.am
| | +-- sharedlib.c
| | +-- sharedlib.h
| +-- man
| | +-- Makefile.am
| | +-- hello.1
| +-- src
| +-- Makefile.am
| +-- hello.c
+-- debhello-2.0.tar.gz

6 directories, 14 files

此处的源码如下所示。
src/hello.c（v=2.0）：

$ cat debhello-2.0/src/hello.c
#include "config.h"
#include <stdio.h>
#include <sharedlib.h>
int

116

CHAPTER 14. 更多示例 14.11. AUTOTOOLS（多个二进制软件包）

main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
sharedlib();
return 0;

}

lib/sharedlib.h 与 lib/sharedlib.c（v=1.6）：

$ cat debhello-2.0/lib/sharedlib.h
int sharedlib();
$ cat debhello-2.0/lib/sharedlib.c
#include <stdio.h>
int
sharedlib()
{

printf("This is a shared library!\n");
return 0;

}

Makefile.am（v=2.0）：

$ cat debhello-2.0/Makefile.am
recursively process `Makefile.am` in SUBDIRS
SUBDIRS = lib src man
$ cat debhello-2.0/man/Makefile.am
manpages (distributed in the source package)
dist_man_MANS = hello.1
$ cat debhello-2.0/lib/Makefile.am
libtool librares to be produced
lib_LTLIBRARIES = libsharedlib.la

source files used for lib_LTLIBRARIES
libsharedlib_la_SOURCES = sharedlib.c

C pre-processor flags used for lib_LTLIBRARIES
#libsharedlib_la_CPPFLAGS =

Headers files to be installed in <prefix>/include
include_HEADERS = sharedlib.h

Versioning Libtool Libraries with version triplets
libsharedlib_la_LDFLAGS = -version-info 1:0:0
$ cat debhello-2.0/src/Makefile.am
program executables to be produced
bin_PROGRAMS = hello

source files used for bin_PROGRAMS
hello_SOURCES = hello.c

C pre-processor flags used for bin_PROGRAMS
AM_CPPFLAGS = -I$(srcdir) -I$(top_srcdir)/lib

Extra options for the linker for hello
hello_LDFLAGS =

Libraries the `hello` binary to be linked
hello_LDADD = $(top_srcdir)/lib/libsharedlib.la

configure.ac（v=2.0）：

$ cat debhello-2.0/configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello],[2.2],[foo@example.org])

117

CHAPTER 14. 更多示例 14.11. AUTOTOOLS（多个二进制软件包）

AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])

AM_INIT_AUTOMAKE([foreign])

Set default to --enable-shared --disable-static
LT_INIT([shared disable-static])

find the libltdl sources in the libltdl sub-directory
LT_CONFIG_LTDL_DIR([libltdl])

choose one
LTDL_INIT([recursive])
#LTDL_INIT([subproject])
#LTDL_INIT([nonrecursive])

Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
Checks for programs.
AC_PROG_CC

only for the recursive case
AC_CONFIG_FILES([Makefile

lib/Makefile
man/Makefile
src/Makefile])

AC_OUTPUT

Let’s use the debmake command to package this into multiple packages:

• debhello: type = bin

• libsharedlib1: type = lib

• libsharedlib-dev: type = dev

Here, we use the -b’libsharedlib1,libsharedlib-dev’ option to specify the additional binary packages
to be generated.

$ cd /path/to/debhello-2.0
$ debmake -b',libsharedlib1,libsharedlib-dev' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="2.0", rev="1"
I: *** start packaging in "debhello-2.0". ***
I: provide debhello_2.0.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-2.0.tar.gz debhello_2.0.orig.tar.gz
I: pwd = "/path/to/debhello-2.0"
I: parse binary package settings: ,libsharedlib1,libsharedlib-dev
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: binary package=libsharedlib1 Type=lib / Arch=any M-A=same
I: binary package=libsharedlib-dev Type=dev / Arch=any M-A=same
I: analyze the source tree
I: build_type = Autotools with autoreconf
...

结果与“第 14.8 节”中的相似，但是这个具有更多的模板文件。
让我们来检查一下自动产生的模板文件。
debian/rules（模板文件，v=2.0）：

$ cd /path/to/debhello-2.0
$ cat debian/rules

118

CHAPTER 14. 更多示例 14.11. AUTOTOOLS（多个二进制软件包）

#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@ --with autoreconf

#override_dh_install:
dh_install --list-missing -X.la -X.pyc -X.pyo

作为维护者，我们要把这个 Debian 软件包做得更好。
debian/rules（维护者版本，v=2.0）：

$ cd /path/to/debhello-2.0
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@ --with autoreconf

override_dh_missing:
dh_missing -X.la

debian/control（维护者版本，v=2.0）：

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
dh-autoreconf,
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
libsharedlib1 (= ${binary:Version}),
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the compiled binary executable.
.
This Debian binary package is an example package.
(This is an example only)

Package: libsharedlib1
Section: libs
Architecture: any
Multi-Arch: same

119

CHAPTER 14. 更多示例 14.11. AUTOTOOLS（多个二进制软件包）

Pre-Depends:
${misc:Pre-Depends},
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the shared library.

Package: libsharedlib-dev
Section: libdevel
Architecture: any
Multi-Arch: same
Depends:
libsharedlib1 (= ${binary:Version}),
${misc:Depends},
Description: Simple packaging example for debmake
This package contains the development files.

debian/*.install（维护者版本，v=2.0）：

$ vim debian/copyright
... hack, hack, hack, ...
$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

因为上游源码已经具有正确的自动生成的 Makefile 文件，所以没有必要再去创建 debian/install 和
debian/manpages 文件。

在 debian/ 目录下还有一些其它的模板文件。它们也需要进行更新。
debian/ 目录下的模板文件。（v=2.0）：

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ rm -rf debian/patches
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- debhello.dirs
+-- debhello.doc-base

120

CHAPTER 14. 更多示例 14.12. CMAKE（多个二进制软件包）

+-- debhello.docs
+-- debhello.examples
+-- debhello.info
+-- debhello.install
+-- debhello.links
+-- debhello.manpages
+-- gbp.conf
+-- libsharedlib-dev.install
+-- libsharedlib1.install
+-- libsharedlib1.symbols
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 22 files

其余的打包工作与“第 14.8 节”中的近乎一致。
此处是生成的二进制包的依赖项列表。
生成的二进制包的依赖项列表（v=2.0）：

$ dpkg -f debhello-dbgsym_2.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 2.0-1)
$ dpkg -f debhello_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.0-1), libc6 (>= 2.34)
$ dpkg -f libsharedlib-dev_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.0-1)
$ dpkg -f libsharedlib1-dbgsym_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.0-1)
$ dpkg -f libsharedlib1_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.2.5)

14.12 CMake（多个二进制软件包）

This example demonstrates creating a set of Debian binary packages including the executable package,
the shared library package, the development file package, and the debug symbol package from a simple
C source program using CMake (CMakeLists.txt and files such as config.h.in) as its build system.

让我们假设上游源码包为 debhello-2.1.tar.gz。
此类型的源码旨在作为非系统文件安装，例如：

$ tar -xzmf debhello-2.1.tar.gz
$ cd debhello-2.1
$ mkdir obj-x86_64-linux-gnu
$ cd obj-x86_64-linux-gnu
$ cmake ..
$ make
$ make install

让我们取得源码并制作 Debian 软件包。
下载 debhello-2.1.tar.gz

$ wget http://www.example.org/download/debhello-2.1.tar.gz
...

121

CHAPTER 14. 更多示例 14.12. CMAKE（多个二进制软件包）

$ tar -xzmf debhello-2.1.tar.gz
$ tree
.
+-- debhello-2.1
| +-- CMakeLists.txt
| +-- LICENSE
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- lib
| | +-- CMakeLists.txt
| | +-- sharedlib.c
| | +-- sharedlib.h
| +-- man
| | +-- CMakeLists.txt
| | +-- hello.1
| +-- src
| +-- CMakeLists.txt
| +-- config.h.in
| +-- hello.c
+-- debhello-2.1.tar.gz

6 directories, 14 files

此处的源码如下所示。
src/hello.c（v=2.1）：

$ cat debhello-2.1/src/hello.c
#include "config.h"
#include <stdio.h>
#include <sharedlib.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
sharedlib();
return 0;

}

src/config.h.in（v=2.1）：

$ cat debhello-2.1/src/config.h.in
/* name of the package author */
#define PACKAGE_AUTHOR "@PACKAGE_AUTHOR@"

lib/sharedlib.c 与 lib/sharedlib.h（v=2.1）：

$ cat debhello-2.1/lib/sharedlib.h
int sharedlib();
$ cat debhello-2.1/lib/sharedlib.c
#include <stdio.h>
int
sharedlib()
{

printf("This is a shared library!\n");
return 0;

}

CMakeLists.txt（v=2.1）：

$ cat debhello-2.1/CMakeLists.txt
cmake_minimum_required(VERSION 2.8)
project(debhello)
set(PACKAGE_AUTHOR "Osamu Aoki")
add_subdirectory(lib)

122

CHAPTER 14. 更多示例 14.12. CMAKE（多个二进制软件包）

add_subdirectory(src)
add_subdirectory(man)
$ cat debhello-2.1/man/CMakeLists.txt
install(
FILES ${CMAKE_CURRENT_SOURCE_DIR}/hello.1
DESTINATION share/man/man1

)
$ cat debhello-2.1/src/CMakeLists.txt
Always define HAVE_CONFIG_H
add_definitions(-DHAVE_CONFIG_H)
Generate config.h from config.h.in
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/config.h.in"
"${CMAKE_CURRENT_BINARY_DIR}/config.h"
)

include_directories("${CMAKE_CURRENT_BINARY_DIR}")
include_directories("${CMAKE_SOURCE_DIR}/lib")

add_executable(hello hello.c)
target_link_libraries(hello sharedlib)
install(TARGETS hello
RUNTIME DESTINATION bin

)

让我们使用 debmake 命令打包。

$ cd /path/to/debhello-2.1
$ debmake -b',libsharedlib1,libsharedlib-dev' -x1
I: set parameters
...
I: sanity check of parameters
I: pkg="debhello", ver="2.1", rev="1"
I: *** start packaging in "debhello-2.1". ***
I: provide debhello_2.1.orig.tar.?z for non-native Debian package
I: pwd = "/path/to"
I: $ ln -sf debhello-2.1.tar.gz debhello_2.1.orig.tar.gz
I: pwd = "/path/to/debhello-2.1"
I: parse binary package settings: ,libsharedlib1,libsharedlib-dev
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: binary package=libsharedlib1 Type=lib / Arch=any M-A=same
I: binary package=libsharedlib-dev Type=dev / Arch=any M-A=same
I: analyze the source tree
I: build_type = Cmake
...

结果与“第 14.8 节”中的类似，但是并不完全一致。
让我们来检查一下自动产生的模板文件。
debian/rules（模板文件，v=2.1）：

$ cd /path/to/debhello-2.1
$ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1

%:
dh $@

#override_dh_auto_configure:
dh_auto_configure -- \
-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_TARGET_MULTIARCH)"

123

CHAPTER 14. 更多示例 14.12. CMAKE（多个二进制软件包）

作为维护者，我们要把这个 Debian 软件包做得更好。
debian/rules（维护者版本，v=2.1）：

$ cd /path/to/debhello-2.1
$ vim debian/rules
... hack, hack, hack, ...
$ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed
DEB_HOST_MULTIARCH ?= $(shell dpkg-architecture -qDEB_HOST_MULTIARCH)

%:
dh $@

override_dh_auto_configure:
dh_auto_configure -- \

-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_HOST_MULTIARCH)"

debian/control（维护者版本，v=2.1）：

$ vim debian/control
... hack, hack, hack, ...
$ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
cmake,
debhelper-compat (= 13),
Standards-Version: 4.6.2
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
libsharedlib1 (= ${binary:Version}),
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the compiled binary executable.
.
This Debian binary package is an example package.
(This is an example only)

Package: libsharedlib1
Section: libs
Architecture: any
Multi-Arch: same
Pre-Depends:
${misc:Pre-Depends},
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the shared library.

Package: libsharedlib-dev
Section: libdevel
Architecture: any

124

CHAPTER 14. 更多示例 14.12. CMAKE（多个二进制软件包）

Multi-Arch: same
Depends:
libsharedlib1 (= ${binary:Version}),
${misc:Depends},
Description: Simple packaging example for debmake
This package contains the development files.

debian/*.install（维护者版本，v=2.1）：

$ vim debian/copyright
... hack, hack, hack, ...
$ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The upstream CMakeLists.txt file needs to be patched to handle the multiarch path correctly.
debian/patches/*（维护者版本，v=2.1）：

... hack, hack, hack, ...
$ cat debian/libsharedlib1.symbols
libsharedlib.so.1 libsharedlib1 #MINVER#
sharedlib@Base 2.1

因为上游源码已经具有正确的自动生成的 Makefile 文件，所以没有必要再去创建 debian/install 和
debian/manpages 文件。

在 debian/ 目录下还有一些其它的模板文件。它们也需要进行更新。
debian/ 目录下的模板文件。（v=2.1）：

$ rm -f debian/clean debian/dirs debian/install debian/links
$ rm -f debian/README.source debian/source/*.ex
$ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- debhello.dirs
+-- debhello.doc-base
+-- debhello.docs
+-- debhello.examples
+-- debhello.info
+-- debhello.install

125

CHAPTER 14. 更多示例 14.13. 国际化

+-- debhello.links
+-- debhello.manpages
+-- gbp.conf
+-- libsharedlib-dev.install
+-- libsharedlib1.install
+-- libsharedlib1.symbols
+-- patches/
| +-- 000-cmake-multiarch.patch
| +-- series
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

5 directories, 24 files

其余的打包工作与“第 14.8 节”中的近乎一致。
此处是生成的二进制包的依赖项列表。
生成的二进制包的依赖项列表（v=2.1）：

$ dpkg -f debhello-dbgsym_2.1-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 2.1-1)
$ dpkg -f debhello_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.1-1), libc6 (>= 2.34)
$ dpkg -f libsharedlib-dev_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.1-1)
$ dpkg -f libsharedlib1-dbgsym_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.1-1)
$ dpkg -f libsharedlib1_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.2.5)

14.13 国际化

此处是更新“第 14.11 节”中提供的简单上游 C 语言源代码 debhello-2.0.tar.gz 以便进行国际化（i18n）
并创建更新后的上游 C 语言源代码 debhello-2.0.tar.gz 的示例。

在实际情况中，此软件包应该已被国际化过。所以此示例用作帮助您了解国际化的具体实现方法。

提示

负责维护国际化的维护者的日常活动就是将通过缺陷追踪系统（BTS）反馈给您
的 po 翻译文件添加至 po/ 目录，然后更新 po/LINGUAS 文件的语言列表。

让我们取得源码并制作 Debian 软件包。
下载 debhello-2.0.tar.gz（国际化版）

$ wget http://www.example.org/download/debhello-2.0.tar.gz
...
$ tar -xzmf debhello-2.0.tar.gz
$ tree

126

CHAPTER 14. 更多示例 14.13. 国际化

.
+-- debhello-2.0
| +-- LICENSE
| +-- Makefile.am
| +-- README.md
| +-- configure.ac
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- lib
| | +-- Makefile.am
| | +-- sharedlib.c
| | +-- sharedlib.h
| +-- man
| | +-- Makefile.am
| | +-- hello.1
| +-- src
| +-- Makefile.am
| +-- hello.c
+-- debhello-2.0.tar.gz

6 directories, 14 files

使用 gettextize 命令将此源代码树国际化，并删除由 Autotools 自动生成的文件。
运行 gettextize（国际化版）：

$ cd /path/to/debhello-2.0
$ gettextize
Creating po/ subdirectory
Creating build-aux/ subdirectory
Copying file ABOUT-NLS
Copying file build-aux/config.rpath
Not copying intl/ directory.
Copying file po/Makefile.in.in
Copying file po/Makevars.template
Copying file po/Rules-quot
Copying file po/boldquot.sed
Copying file po/en@boldquot.header
Copying file po/en@quot.header
Copying file po/insert-header.sin
Copying file po/quot.sed
Copying file po/remove-potcdate.sin
Creating initial po/POTFILES.in
Creating po/ChangeLog
Creating directory m4
Copying file m4/gettext.m4
Copying file m4/iconv.m4
Copying file m4/lib-ld.m4
Copying file m4/lib-link.m4
Copying file m4/lib-prefix.m4
Copying file m4/nls.m4
Copying file m4/po.m4
Copying file m4/progtest.m4
Creating m4/ChangeLog
Updating Makefile.am (backup is in Makefile.am~)
Updating configure.ac (backup is in configure.ac~)
Creating ChangeLog

Please use AM_GNU_GETTEXT([external]) in order to cause autoconfiguration
to look for an external libintl.

Please create po/Makevars from the template in po/Makevars.template.
You can then remove po/Makevars.template.

Please fill po/POTFILES.in as described in the documentation.

127

CHAPTER 14. 更多示例 14.13. 国际化

Please run 'aclocal' to regenerate the aclocal.m4 file.
You need aclocal from GNU automake 1.9 (or newer) to do this.
Then run 'autoconf' to regenerate the configure file.

You will also need config.guess and config.sub, which you can get from the CV...
of the 'config' project at http://savannah.gnu.org/. The commands to fetch th...
are
$ wget 'http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/conf...
$ wget 'http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/conf...

You might also want to copy the convenience header file gettext.h
from the /usr/share/gettext directory into your package.
It is a wrapper around <libintl.h> that implements the configure --disable-nl...
option.

Press Return to acknowledge the previous 6 paragraphs.
$ rm -rf m4 build-aux *~

让我们确认一下 po/ 目录下生成的文件。
po 目录下的文件（国际化版）：

$ ls -l po
total 60
-rw-rw-r-- 1 osamu osamu 494 Nov 29 07:59 ChangeLog
-rw-rw-r-- 1 osamu osamu 17577 Nov 29 07:59 Makefile.in.in
-rw-rw-r-- 1 osamu osamu 3376 Nov 29 07:59 Makevars.template
-rw-rw-r-- 1 osamu osamu 59 Nov 29 07:59 POTFILES.in
-rw-rw-r-- 1 osamu osamu 2203 Nov 29 07:59 Rules-quot
-rw-rw-r-- 1 osamu osamu 217 Nov 29 07:59 boldquot.sed
-rw-rw-r-- 1 osamu osamu 1337 Nov 29 07:59 en@boldquot.header
-rw-rw-r-- 1 osamu osamu 1203 Nov 29 07:59 en@quot.header
-rw-rw-r-- 1 osamu osamu 672 Nov 29 07:59 insert-header.sin
-rw-rw-r-- 1 osamu osamu 153 Nov 29 07:59 quot.sed
-rw-rw-r-- 1 osamu osamu 432 Nov 29 07:59 remove-potcdate.sin

Let’s update the configure.ac by adding “AM_GNU_GETTEXT([external])”, etc..
configure.ac（国际化版）：

$ vim configure.ac
... hack, hack, hack, ...
$ cat configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello],[2.2],[foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])

AM_INIT_AUTOMAKE([foreign])

Set default to --enable-shared --disable-static
LT_INIT([shared disable-static])

find the libltdl sources in the libltdl sub-directory
LT_CONFIG_LTDL_DIR([libltdl])

choose one
LTDL_INIT([recursive])
#LTDL_INIT([subproject])
#LTDL_INIT([nonrecursive])

Add #define PACKAGE_AUTHOR ... in config.h with a comment

128

CHAPTER 14. 更多示例 14.13. 国际化

AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
Checks for programs.
AC_PROG_CC

desktop file support required
AM_GNU_GETTEXT_VERSION([0.19.3])
AM_GNU_GETTEXT([external])

only for the recursive case
AC_CONFIG_FILES([Makefile

po/Makefile.in
lib/Makefile
man/Makefile
src/Makefile])

AC_OUTPUT

让我们从 po/Makevars.template 文件中创建 po/Makevars 文件。
po/Makevars（国际化版）：

... hack, hack, hack, ...
$ diff -u po/Makevars.template po/Makevars
--- po/Makevars.template 2024-11-29 07:59:15.133577084 +0000
+++ po/Makevars 2024-11-29 07:59:15.209578283 +0000
@@ -18,14 +18,14 @@
or entity, or to disclaim their copyright. The empty string stands for
the public domain; in this case the translators are expected to disclaim
their copyright.
-COPYRIGHT_HOLDER = Free Software Foundation, Inc.
+COPYRIGHT_HOLDER = Osamu Aoki <osamu@debian.org>

This tells whether or not to prepend "GNU " prefix to the package
name that gets inserted into the header of the $(DOMAIN).pot file.
Possible values are "yes", "no", or empty. If it is empty, try to
detect it automatically by scanning the files in $(top_srcdir) for
"GNU packagename" string.
-PACKAGE_GNU =
+PACKAGE_GNU = no

This is the email address or URL to which the translators shall report
bugs in the untranslated strings:
$ rm po/Makevars.template

Let’s update C sources for the i18n version by wrapping strings with _(…).
src/hello.c （国际化版）：

... hack, hack, hack, ...
$ cat src/hello.c
#include "config.h"
#include <stdio.h>
#include <sharedlib.h>
#include <libintl.h>
#define _(string) gettext (string)
int
main()
{

printf(_("Hello, I am " PACKAGE_AUTHOR "!\n"));
sharedlib();
return 0;

}

lib/sharedlib.c（国际化版）：

... hack, hack, hack, ...
$ cat lib/sharedlib.c
#include <stdio.h>

129

CHAPTER 14. 更多示例 14.13. 国际化

#include <libintl.h>
#define _(string) gettext (string)
int
sharedlib()
{

printf(_("This is a shared library!\n"));
return 0;

}

新版本的 gettext（v = 0.19）可以直接处理桌面文件的国际化版本。
data/hello.desktop.in（国际化版）：

$ fgrep -v '[ja]=' data/hello.desktop > data/hello.desktop.in
$ rm data/hello.desktop
$ cat data/hello.desktop.in
[Desktop Entry]
Name=Hello
Comment=Greetings
Type=Application
Keywords=hello
Exec=hello
Terminal=true
Icon=hello.png
Categories=Utility;

让我们列出输入文件，以便在 po/POTFILES.in 中提取可翻译的字符串。
po/POTFILES.in（国际化版）：

... hack, hack, hack, ...
$ cat po/POTFILES.in
src/hello.c
lib/sharedlib.c
data/hello.desktop.in

此处是在 SUBDIRS 环境变量中添加 po 目录后更新过的根 Makefile.am 文件。
Makefile.am （国际化版）：

$ cat Makefile.am
recursively process `Makefile.am` in SUBDIRS
SUBDIRS = po lib src man

ACLOCAL_AMFLAGS = -I m4

EXTRA_DIST = build-aux/config.rpath m4/ChangeLog

让我们创建一个翻译模板文件 debhello.pot。
po/debhello.pot（国际化版）：

$ xgettext -f po/POTFILES.in -d debhello -o po/debhello.pot -k_
Warning: program compiled against libxml 212 using older 209
$ cat po/debhello.pot
SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2024-11-29 07:59+0000\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"Language: \n"

130

CHAPTER 14. 更多示例 14.13. 国际化

"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"

#: src/hello.c:9
#, c-format
msgid "Hello, I am "
msgstr ""

#: lib/sharedlib.c:7
#, c-format
msgid "This is a shared library!\n"
msgstr ""

#: data/hello.desktop.in:3
msgid "Hello"
msgstr ""

#: data/hello.desktop.in:4
msgid "Greetings"
msgstr ""

#: data/hello.desktop.in:6
msgid "hello"
msgstr ""

让我们添加法语的翻译。
po/LINGUAS 与 po/fr.po（国际化版）：

$ echo 'fr' > po/LINGUAS
$ cp po/debhello.pot po/fr.po
$ vim po/fr.po
... hack, hack, hack, ...
$ cat po/fr.po
SOME DESCRIPTIVE TITLE.
This file is put in the public domain.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
msgid ""
msgstr ""
"Project-Id-Version: debhello 2.2\n"
"Report-Msgid-Bugs-To: foo@example.org\n"
"POT-Creation-Date: 2015-03-01 20:22+0900\n"
"PO-Revision-Date: 2015-02-21 23:18+0900\n"
"Last-Translator: Osamu Aoki <osamu@debian.org>\n"
"Language-Team: French <LL@li.org>\n"
"Language: ja\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"

#: src/hello.c:34
#, c-format
msgid "Hello, my name is %s!\n"
msgstr "Bonjour, je m'appelle %s!\n"

#: lib/sharedlib.c:29
#, c-format
msgid "This is a shared library!\n"
msgstr "Ceci est une bibliothèque partagée!\n"

#: data/hello.desktop.in:3
msgid "Hello"
msgstr ""

131

CHAPTER 14. 更多示例 14.14. 细节

#: data/hello.desktop.in:4
msgid "Greetings"
msgstr "Salutations"

#: data/hello.desktop.in:6
msgid "hello"
msgstr ""

#: data/hello.desktop.in:9
msgid "hello.png"
msgstr ""

打包工作与“第 14.11 节”中的近乎一致。
You can find more i18n examples by following “第 14.14 节”.

14.14 细节

You can obtain detailed information about the examples presented and their variants as follows:
如何取得细节

$ apt-get source debmake-doc
$ cd debmake-doc*
$ cd examples
$ view examples/README.md

Follow the exact instruction in examples/README.md.

$ cd examples
$ make

Now, each directory named as examples/debhello-?.?_build-? contains the Debian packaging ex-
ample.

• 模拟控制台命令行活动日志：.log 文件

• 模拟控制台命令行活动日志（缩略版）：.slog 文件

• 执行 debmake 命令后的源码树快照：debmake 目录

• snapshot source tree image after proper packaging: the package directory

• 执行 debuild 命令后的源码树快照：test 目录

Notable examples include:

• POSIX shell script with Makefile and i18n support (v=3.0)

• C source with Makefile.in + configure and i18n support (v=3.2)

• C source with Autotools and i18n support (v=3.3)

• 带有 CMake 和国际化支持的的 C 语言源代码（v=3.4）

132

Chapter 15

debmake(1) 手册页

15.1 名称

debmake，用来制作 Debian 源码包的程序

15.2 概述

debmake [-h] [-c | -k] [-n | -a package-version.orig.tar.gz | -d | -t] [-p package] [-u version] [-r revision]
[-z extension] [-b ”binarypackage[:type], …]” [-e foo@example.org] [-f ”firstname lastname”] [-i ”buildtool”
| -j] [-l license_file] [-m] [-o file] [-q] [-s] [-v] [-w ”addon, … ”] [-x [01234]] [-y] [-L] [-P] [-T]

15.3 描述

debmake 协助从上游源代码构建一个 Debian 软件包，通常做法如下：

• 下载上游源码压缩包（tarball）并命名为 package-version.tar.gz 文件。

• 对其进行解压缩并将所有文件放置于 package-version/ 目录之下。

• 在 package-version/ 目录中调用 debmake，并按需带上参数。

• 手工调整 package-version/debian/ 目录下的文件。

• dpkg-buildpackage (usually from its wrapper debuild or sbuild) is invoked in the package-version/
directory to make Debian packages.

请确保将 -b、-f、-l 和 -w 选项的参数使用引号合适地保护起来，以避免 shell 环境的干扰。

15.3.1 可选参数：

-h, --help 显示本帮助信息并退出。

-c, --copyright 为授权 + 许可证文本而扫描源码，然后退出。

• -c：简单输出风格

• -cc：正常输出风格（类似 debian/copyright 文件）

• -ccc：调试输出风格

-k, --kludge 对 debian/copyright 文件和源代码进行比较并退出。

debian/copyright 必须将通用的文件匹配模式放在前部并将个别文件的例外放在后部。

• -k：基本输出风格

• -kk：冗长输出风格

133

CHAPTER 15. DEBMAKE(1) 手册页 15.3. 描述

-n, --native make a native Debian source package without .orig.tar.gz. This makes a Debian source
format “3.0 (native)”package.
If you are thinking of packaging a Debian-specific source tree with debian/ in it into a native De-
bian package, please think otherwise. You can use the “debmake -d -i debuild”or “debmake
-t -i debuild”commands to make a Debian non-native package using the Debian source format
“3.0 (quilt)”The only difference is that the debian/changelog file must use the non-native version
scheme: version-revision. The non-native package is more friendly to downstream distributions.

-a package-version.tar.gz, --archive package-version.tar.gz 直接使用上游源码压缩包。（-p, -u, -z：
被覆盖）

上游源码压缩包可以命名为 package_version.orig.tar.gz 或者 tar.gz。在某些情况下，也可使用
tar.bz2 或 tar.xz。

如果所指定的源码压缩包文件名中包含大写字母，Debian 打包时生成的名称会将其转化为小写字
母。

If the specified argument is the URL (http://, https://, or ftp://) to the upstream tarball,
the upstream tarball is downloaded from the URL using wget or curl.

-d, --dist run the “make dist”command equivalents first to generate the upstream tarball and use it.
The “debmake -d”command is designed to run in the package/ directory hosting the upstream VCS
with the build system supporting the “make dist”command equivalents. (automake/autoconf,
…)

-t, --tar run the “tar”command to generate the upstream tarball and use it.
The “debmake -t”command is designed to run in the package/ directory hosting the upstream VCS.
Unless you provide the upstream version with the -u option or with the debian/changelog file, a
snapshot upstream version is generated in the 0\~%y%m%d%H%M format, e.g., 0~1403012359,
from the UTC date and time. The generated tarball excludes the debian/ directory found in the
upstream VCS. (It also excludes typical VCS directories: .git/, .hg/, .svn/, .CVS/.)

-p 软件包名, --package 软件包名 设置 Debian 软件包名称。

-u 上游版本号, --upstreamversion 版本号 设置上游软件包版本。

-r 修订号, --revision 修订号 设置 Debian 软件包修订号。

-z 扩展名, --targz 扩展名 设置源码压缩包类型，扩展名 =(tar.gz|tar.bz2|tar.xz)。（别名：z, b, x）

-b ”binarypackage[:type],… ”, --binaryspec ”binarypackage[:type],… ” set the binary package specs
by a comma separated list of binarypackage:type pairs. Here, binarypackage is the binary package
name, and the optional type is chosen from the following type values:

• bin: C/C++ compiled ELF binary code package (any, foreign) (default, alias: ””, i.e., null-
string)

• data: Data (fonts, graphics, …) package (all, foreign) (alias: da)
• dev：库开发软件包（any，same）（别名：de）
• doc：文档软件包（all，foreign）（别名：do）
• lib：库软件包（any，same）（别名：l）
• perl：Perl 脚本软件包（all，foreign）（别名：pl）
• python3: Python (version 3) script package (all, foreign) (alias: py3, python, py)
• ruby：Ruby 脚本软件包（all，foreign）（别名：rb）
• nodejs：基于 Node.js 的 JavaScript 软件包（all，foreign）（别名：js）
• script: Shell and other interpreted language script package (all, foreign) (alias: sh)

The pair values in the parentheses, such as (any, foreign), are the Architecture and Multi-Arch
stanza values set in the debian/control file. In many cases, the debmake command makes good
guesses for type from binarypackage. If type is not obvious, type is set to bin.
Here are examples for typical binary package split scenarios where the upstream Debian source
package name is foo:

134

CHAPTER 15. DEBMAKE(1) 手册页 15.3. 描述

• Generating an executable binary package foo:
– “-b’foo:bin’”, or its short form ̀-b’-’ ̀”, or no -b option

• Generating an executable (python3) binary package python3-foo:
– “-b’python3-foo:py’”, or its short form “-b’python3-foo’”

• Generating a data package foo:
– “-b’foo:data’”, or its short form “-b’-:data’”

• Generating a executable binary package foo and a documentation one foo-doc:
– “-b’foo:bin,foo-doc:doc’”, or its short form “-b’-:-doc’”

• Generating a executable binary package foo, a library package libfoo1, and a library devel-
opment package libfoo-dev:

– “-b’foo:bin,libfoo1:lib,libfoo-dev:dev’”or its short form “-b’-,libfoo1,libfoo-dev’”

如果源码树的内容和类型的设置不一致，debmake 命令会发出警告。

-e foo@example.org, --email foo@example.org 设置电子邮件地址。

默认值为环境变量 $DEBEMAIL 的值。

-f ” 名称姓氏”, --fullname ” 名称姓氏” 设置全名。

默认值为环境变量 $DEBFULLNAME 的值。

-i ” 构建工具”, --invoke ” 构建工具” invoke ”buildtool” at the end of execution. buildtool may be “dpkg-
buildpackage”, “debuild”, “sbuild”, etc.
默认情况是不执行任何程序。

设置该选项也会自动设置 --local 选项。

-j, --judge 运行 dpkg-depcheck 以检查构建依赖和文件路径。检查日志将存储在父目录下。

• 软件包名.build-dep.log：dpkg-depcheck 的日志文件。

• 软件包名.install.log：记录 debian/tmp 目录下所安装文件的日志。

-l ”license_file,… ”, --license ”license_file,… ” 在存放许可证扫描结果的 debian/copyright 文件末尾
添加格式化后的许可证文本。

The default is to add COPYING and LICENSE, and license_file needs to list only the additional file
names all separated by “,”.

-m, --monoarch 强制软件包不使用多架构特性。

-o 文件, --option 文件 从指定 file 读取可选参数。（这个选项不适合日常使用。）

文件 file 的内容，将在 para.py 的末尾作为 Python 代码的源代码。例如，软件包描述信息可以使
用下述文件来定义。

para['desc'] = 'program short description'
para['desc_long'] = '''\
program long description which you wish to include.
.
Empty line is space + .
You keep going on ...
'''

-q, --quitearly 在创建 debian/ 目录下的文件之前即提前退出程序。

-s, --spec use upstream spec (pyproject.py for Python, etc.) for the package description.

-v, --version 显示版本信息。

135

CHAPTER 15. DEBMAKE(1) 手册页 15.4. 示例

-w ”addon,… ”, --with ”addon,… ” 在 debian/rules 文件中向 dh(1) 命令的参数中添加额外的 dh(1) 参
数以指定所使用的附加组件（addon）。

The addon values are listed all separated by “,”, e.g., “-w ”python3,autoreconf””.
For Autotools based packages, autoreconf as addon to run “autoreconf -i -v -f”for every package
building is default behavior of the dh(1) command.
For Autotools based packages, if they install Python (version 3) programs, setting python3 as
addon to the debmake command argument is needed since this is non-obvious. But for pypro-
ject.toml based Python packages, setting python3 as addon to the debmake command argument
is not needed since this is obvious and the debmake command automatically set it to the dh(1)
command.

-x n, --extra n 以模板文件的形式创建配置文件（请注意 debian/changelog、debian/control、de-
bian/copyright 和 debian/rules 文件是构建 Debian 二进制软件包所需的最小文件集合。）

n 的数字大小决定了生成哪些配置模板文件。

• -x0: all required configuration template files. (selected option if any of these files already exist)
• -x1: all -x0 files + desirable configuration template files with binary package type supports.
• -x2: all -x1 files + normal configuration template files with maintainer script supports.
• -x3: all -x2 files + optional configuration template files. (default option)
• -x4: all -x3 files + deprecated configuration template files.

Some configuration template files are generated with the extra .ex suffix to ease their removal. To
activate these, rename their file names to the ones without the .ex suffix and edit their contents. Ex-
isting configuration files are never overwritten. If you wish to update some of the existing configuration
files, please rename them before running the debmake command and manually merge the generated
configuration files with the old renamed ones.

-y, --yes “force yes”for all prompts. (without option: “ask [Y/n]”; doubled option: “force no”)

-L, --local 为本地软件包生成配置文件以绕过 lintian(1) 的检查。

-P, --pedantic 对自动生成的文件进行严格（甚至古板到迂腐程度）的检查。

-T, --tutorial output tutorial comment lines in template files. default when -x3 or -x4 is set.

15.4 示例

For a well behaving source, you can build a good-for-local-use installable single Debian binary package
easily with one command. Test install of such a package generated in this way offers a good alternative
to the traditional “make install”command installing into the /usr/local directory since the Debian package
can be removed cleanly by the “dpkg -P ’… ’”command. Here are some examples of how to build such
test packages. (These should work in most cases. If the -d option does not work, try the -t option instead.)

For a typical C program source tree packaged with autoconf/automake:

• debmake -d -i debuild

对于典型的 Python（版本 3）模块源码树：

• debmake -s -d -b”:python3” -i debuild

对于 package-version.tar.gz 存档里的一个典型 Python*（版本 3）模块：

• debmake -s -a package-version.tar.gz -b”:python3” -i debuild

对于典型的以 package-version.tar.gz 归档提供的 Perl 模块：

• debmake -a package-version.tar.gz -b”:perl” -i debuild

136

CHAPTER 15. DEBMAKE(1) 手册页 15.5. 帮助软件包

15.5 帮助软件包

打包工作也许需要额外安装一些专用的帮助软件包。

• Python (version 3) programs may require the pybuild-plugin-pyproject package.

• The Autotools (autoconf + automake) build system may require autotools-dev or dh-autoreconf
package.

• Ruby 程序可能需要 gem2deb 软件包。

• 基于 JavaScript 的 Node.js 程序可能需要 pkg-js-tools 软件包。

• Java 程序可能需要 javahelper 软件包。

• Gnome 程序可能需要 gobject-introspection 软件包。

• 等等。

15.6 注意事项

Although debmake is meant to provide template files for the package maintainer to work on, actual
packaging activities are often performed without using debmake while referencing only existing similar
packages and “Debian Policy Manual”. All template files generated by debmake are required to be
modified manually.

There are 2 positive points for debmake:

• debmake helps to write terse packaging tutorial “Guide for Debian Maintainers”(debmake-doc
package).

• debmake provides short extracted license texts as debian/copyright in decent accuracy to help
license review.

Please double check copyright with the licensecheck(1) command.
组成 Debian 软件包名称的字符选取存在一定的限制。最明显的限制应当是软件包名称中禁止出现大

写字母。这里给出正则表达式形式的规则总结：

• Upstream package name (-p): [-+.a-z0-9]{2,}

• Binary package name (-b): [-+.a-z0-9]{2,}

• Upstream version (-u): [0-9][-+.:~a-z0-9A-Z]*

• Debian revision (-r): [0-9][+.~a-z0-9A-Z]*

See the exact definition in “Chapter 5 - Control files and their fields”in the “Debian Policy Manual”.
debmake assumes relatively simple packaging cases. So all programs related to the interpreter are

assumed to be “Architecture: all”. This is not always true.

15.7 除错

请使用 reportbug 命令报告 debmake 软件包的问题与错误。
环境变量 $DEBUG 中设置的字符用来确定日志输出等级。

• i: main.py logging

• p: para.py logging

• s: checkdep5.py check_format_style() logging

• y: checkdep5.py split_years_name() logging

• b: checkdep5.py parse_lines() 1 logging — content_state scan loop: begin-loop

137

https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/manuals/debmake-doc/
https://www.debian.org/doc/debian-policy/#document-ch-controlfields

CHAPTER 15. DEBMAKE(1) 手册页 15.8. 作者

• m: checkdep5.py parse_lines() 2 logging — content_state scan loop: after regex match

• e: checkdep5.py parse_lines() 3 logging — content_state scan loop: end-loop

• a: checkdep5.py parse_lines() 4 logging — print author/translator section text

• f: checkdep5.py check_all_license() 1 logging — input filename for the copyright scan

• l: checkdep5.py check_all_license() 2 logging — print license section text

• c: checkdep5.py check_all_license() 3 logging — print copyright section text

• k: checkdep5.py check_all_license() 4 logging — sort key for debian/copyright stanza

• r: sed.py logging

• w: cat.py logging

• n: kludge.py logging (“debmake -k”)

Use this feature as:

$ DEBUG=ipsybmeaflckrwn debmake ...

See README.developer in the source for more.

15.8 作者

版权所有 © 2014-2024 Osamu Aoki <“osamu@debian.org”>

15.9 许可证

Expat 许可证

15.10 参见

The debmake-doc package provides the “Guide for Debian Maintainers”in plain text, HTML and PDF
formats under the /usr/share/doc/debmake-doc/ directory.

See also dpkg-source(1), deb-control(5), debhelper(7), dh(1), dpkg-buildpackage(1), debuild(1),
quilt(1), dpkg-depcheck(1), sbuild(1), gbp-buildpackage(1), and gbp-pq(1) manpages.

138

mailto:osamu@debian.org
https://www.debian.org/doc/manuals/debmake-doc/

Chapter 16

debmake options

Here are some additional explanations for debmake options.

16.1 Shortcut options (-a, -i)
debmake 命令提供了两个快捷选项。

• -a：打开上游源码压缩包

• -i：执行构建二进制包的脚本

前文中“第 5 章”的例子可以使用下面的命令直接达到目的。

$ debmake -a package-1.0.tar.gz -i debuild

提示

A URL such as “https://www.example.org/DL/package-1.0.tar.gz”may be used
for the -a option.

提示

A URL such as “https://arm.koji.fedoraproject.org/packages/ibus/1.5.7/-
3.fc21/src/ibus-1.5.7-3.fc21.src.rpm”may be used for the -a option, too.

16.2 debmake -b
The debmake command with the -b option provides an intuitive and flexible method to create the initial
template debian/control file. This file defines the split of the Debian binary packages with the following
stanzas:

• Package:

• Architecture: (e.g. amd64)

• Multi-Arch: (see “第 10.10 节”)

• Depends:

139

https://www.example.org/DL/package-1.0.tar.gz
https://arm.koji.fedoraproject.org/packages/ibus/1.5.7/3.fc21/src/ibus-1.5.7-3.fc21.src.rpm
https://arm.koji.fedoraproject.org/packages/ibus/1.5.7/3.fc21/src/ibus-1.5.7-3.fc21.src.rpm

CHAPTER 16. DEBMAKE OPTIONS 16.3. DEBMAKE -CC

• Pre-Depends:

The debmake command also sets an appropriate set of substvars (substitution variables) used in
each pertinent dependency stanza.

我们在这里直接引用 debmake 手册页中的相关一部分内容。

-b ”binarypackage[:type],… ”, --binaryspec ”binarypackage[:type],… ” set the binary package specs
by a comma separated list of binarypackage:type pairs. Here, binarypackage is the binary package
name, and the optional type is chosen from the following type values:

• bin: C/C++ compiled ELF binary code package (any, foreign) (default, alias: ””, i.e., null-
string)

• data: Data (fonts, graphics, …) package (all, foreign) (alias: da)
• dev：库开发软件包（any，same）（别名：de）

• doc：文档软件包（all，foreign）（别名：do）

• lib：库软件包（any，same）（别名：l）
• perl：Perl 脚本软件包（all，foreign）（别名：pl）
• python3: Python (version 3) script package (all, foreign) (alias: py3, python, py)
• ruby：Ruby 脚本软件包（all，foreign）（别名：rb）

• nodejs：基于 Node.js 的 JavaScript 软件包（all，foreign）（别名：js）

• script: Shell and other interpreted language script package (all, foreign) (alias: sh)

The pair values in the parentheses, such as (any, foreign), are the Architecture and Multi-Arch
stanza values set in the debian/control file. In many cases, the debmake command makes good
guesses for type from binarypackage. If type is not obvious, type is set to bin.
Here are examples for typical binary package split scenarios where the upstream Debian source
package name is foo:

• Generating an executable binary package foo:
– “-b’foo:bin’”, or its short form ̀-b’-’ ̀”, or no -b option

• Generating an executable (python3) binary package python3-foo:
– “-b’python3-foo:py’”, or its short form “-b’python3-foo’”

• Generating a data package foo:
– “-b’foo:data’”, or its short form “-b’-:data’”

• Generating a executable binary package foo and a documentation one foo-doc:
– “-b’foo:bin,foo-doc:doc’”, or its short form “-b’-:-doc’”

• Generating a executable binary package foo, a library package libfoo1, and a library devel-
opment package libfoo-dev:

– “-b’foo:bin,libfoo1:lib,libfoo-dev:dev’”or its short form “-b’-,libfoo1,libfoo-dev’”

如果源码树的内容和类型的设置不一致，debmake 命令会发出警告。

16.3 debmake -cc
debmake 命令在带上 -cc 选项时可以向标准输出打印整个源码树的版权和许可证概要信息。

$ tar -xvzf package-1.0.tar.gz
$ cd package-1.0
$ debmake -cc | less

如果转而使用 -c 选项，程序将提供较短的报告。

140

CHAPTER 16. DEBMAKE OPTIONS 16.4. SNAPSHOT UPSTREAM TARBALL (-D, -T)

16.4 Snapshot upstream tarball (-d, -t)
This test building scheme is suitable for git repositories organized as described in gbp-buildpackage(7),
which uses the master, upstream, and pristine-tar branches.

The upstream snapshot from the upstream source tree in the upstream VCS can be made with the
-d option if the upstream supports the “make dist”equivalence.

$ cd /path/to/upstream-vcs
$ debmake -d -i debuild

除此之外，也可使用 -t 选项以使用 tar 命令生成上游源码包。

$ cd /path/to/upstream-vcs
$ debmake -p package -t -i debuild

Unless you provide the upstream version with the -u option or with the debian/changelog file, a
snapshot upstream version is generated in the 0~%y%m%d%H%M format, e.g., 0~1403012359, from
the UTC date and time.

If the upstream VCS is hosted in the package/ directory instead of the upstream-vcs/ directory, the
“-p package”can be skipped.

如果版本控制系统中的上游源码树包含了 debian/* 文件，debmake 命令在带有 -d 选项或者 -t 选项
并结合 -i 选项可以自动化进行使用这些 debian/* 文件从版本控制系统快照中构建非原生软件包的流程。

$ cp -r /path/to/package-0~1403012359/debian/. /path/to/upstream-vcs/debian
$ dch
... update debian/changelog

$ git add -A .; git commit -m "vcs with debian/*"
$ debmake -t -p package -i debuild

This non-native Debian binary package building scheme without the real upstream tarball is consid-
ered a quasi-native Debian package. See “第 11.13 节”for more details.

16.5 debmake -j
这是测试性功能。

生成多个二进制软件包通常比只生成一个二进制软件包需要投入更多的工作量。对源码包进行测试构
建是其中的必要一环。

例如，我们考虑将相同的 package-1.0.tar.gz（参见“第 5 章”）打包并生成多个二进制软件包。

• 调用 debmake 命令并使用 -j 选项以测试构建并报告结果。

$ debmake -j -a package-1.0.tar.gz

• 请检查 package.build-dep.log 文件最后的几行以确定 Build-Depends 所需填写的构建依赖。（您
不需要在 Build-Depends 中列出 debhelper、perl 或 fakeroot 所使用的软件包。在只生成单个软
件包的情况下也是如此。）

• 请检查 package.install.log 的文件内容以确定各个文件的安装路径，从而决定如何将它们拆分成
多个软件包。

• 调用 debmake 命令以开始准备打包信息。

$ rm -rf package-1.0
$ tar -xvzf package-1.0.tar.gz
$ cd package-1.0
$ debmake -b"package1:type1, ..."

• 请使用以上信息更新 debian/control 和 debian/binarypackage.install 文件。

• 按需更新其它 debian/* 文件。

• 使用 debuild 或等效的其它工具构建 Debian 软件包。

141

CHAPTER 16. DEBMAKE OPTIONS 16.6. DEBMAKE -K

$ debuild

• 所有由 debian/binarypackage.install 文件指定的二进制软件包条目均会生成 binarypackage_version-
revision_arch.deb 的安装包。

注意

The -j option for the debmake command invokes dpkg-depcheck(1) to run de-
bian/rules under strace(1) to obtain library dependencies. Unfortunately, this
is very slow. If you know the library package dependencies from other sources
such as the SPEC file in the source, you may just run the ”debmake … ” com-
mand without the -j option and run the “debian/rules install”command to check
the install paths of the generated files.

16.6 debmake -k
这是测试性功能。

在使用上游新发行版本更新软件包时，debmake 可以使用已有的 debian/copyright 文件和整个更
新的源码树文件进行对比验证版权和许可证信息。

$ cd package-vcs
$ gbp import-orig --uscan --pristine-tar
... update source with the new upstream release
$ debmake -k | less

The “debmake -k”command parses the debian/copyright file from the top to the bottom and com-
pares the license of all the non-binary files in the current package with the license described in the last
matching file pattern entry of the debian/copyright file.

在您编辑自动生成的 debian/copyright 文件时，请确保将最通用的文件匹配模式放在文件前部，最
精确的匹配模式放在后部。

提示

For all new upstream releases, run the “debmake -k”command to ensure that the
debian/copyright file is current.

16.7 debmake -P
调用 debmake 命令并带上 -P 选项将会严厉地检查所有自动生成文件的版权和许可证文本信息；即使它
们都使用宽松的许可证也是如此。

此选项不止会影响正常执行过程中所生成的 debian/copyright 文件的内容，也会影响带参数 -k、-c、
-cc 和 -ccc 选项的输出内容。

16.8 debmake -T
调用 debmake 命令并带上 -T 选项会额外输出详细的教程注释行。这些行在模板文件中用 ### 进行标
注。

142

CHAPTER 16. DEBMAKE OPTIONS 16.9. DEBMAKE -X

16.9 debmake -x
debmake 生成的模板文件数量由 -x[01234] 选项进行控制。

• 请参见“第 14.1 节”以了解与拣选使用模板文件的方式。

注意

debmake 命令不会修改任何已存在的配置文件。

143

	前言
	概览
	预备知识
	Debian 社区的工作者
	如何做出贡献
	Debian 的社会驱动力
	技术提醒
	Debian 文档
	帮助资源
	仓库状况
	贡献流程
	新手贡献者和维护者

	工具的配置
	Email setup
	mc 设置
	git 设置
	quilt 设置
	devscripts 设置
	sbuild 设置
	Persistent chroot setup
	gbp 设置
	HTTP 代理
	私有 Debian 仓库
	虚拟机
	本地网络中的虚拟机

	简单打包
	Packaging tarball
	大致流程
	什么是 debmake？
	什么是 debuild？
	第一步：获取上游源代码
	Step 2: Generate template files with debmake
	第三步：编辑模板文件
	Step 4: Building package with debuild
	Step 3 (alternatives): Modification to the upstream source
	Patch by “diff -u” approach
	Patch by dquilt approach
	Patch by “dpkg-source --auto-commit” approach

	打包工作的基础
	打包工作流
	debhelper package
	软件包名称和版本
	原生 Debian 软件包
	debian/rules 文件
	debian/control 文件
	debian/changelog file
	debian/copyright 文件
	debian/patches/* 文件
	debian/source/include-binaries 文件
	debian/watch 文件
	debian/upstream/signing-key.asc file
	debian/salsa-ci.yml 文件
	其它 debian/* 文件

	Quality of packaging
	Reformat debian/* files with wrap-and-sort
	Validate debian/* files with debputy

	Sanitization of the source
	Fix with Files-Excluded
	Fix with “debian/rules clean”
	Fix with extend-diff-ignore
	Fix with tar-ignore
	Fix with “git clean -dfx”

	More on packaging
	软件包自定义
	Customized debian/rules
	Variables for debian/rules
	新上游版本
	Manage patch queue with dquilt
	构建命令
	Note on sbuild
	Special build cases
	上传 orig.tar.gz
	跳过的上传
	错误报告

	高级打包
	Historical perspective
	当前的趋势
	Note on build system
	持续集成
	自举
	编译加固
	可重现的构建
	Substvar
	库软件包
	多体系结构
	Debian 二进制软件包的拆分
	拆包的场景和例子
	Multiarch library path
	Multiarch header file path
	Multiarch *.pc file path
	库符号
	Library package name
	库变迁
	binNMU 安全
	调试信息
	-dbgsym package
	debconf

	Packaging with git
	Salsa 存储库
	Salsa 账户设置
	Salsa 持续集成服务
	分支名称
	Patch unapplied Git repository
	Patch applied Git repository
	Note on gbp
	Note on dgit
	Patch by “gbp-pq” approach
	Manage patch queue with gbp-pq
	gbp import-dscs --debsnap
	Note on dgit-maint-debrebase workflow
	Quasi-native Debian packaging

	提示
	在 UTF-8 环境下构建
	UTF-8 转换
	Hints for Debugging

	工具的使用
	debdiff
	dget
	mk-origtargz
	origtargz
	git deborig
	dpkg-source -b
	dpkg-source -x
	debc
	piuparts
	bts

	更多示例
	挑选最好的模板
	无 Makefile（shell，命令行界面）
	Makefile（shell，命令行界面）
	pyproject.toml (Python3, CLI)
	Makefile（shell，图形界面）
	pyproject.toml（Python3, 图形界面）
	Makefile（单个二进制软件包）
	Makefile.in + configure（单个二进制软件包）
	Autotools（单个二进制文件）
	CMake（单个二进制软件包）
	Autotools（多个二进制软件包）
	CMake（多个二进制软件包）
	国际化
	细节

	debmake(1) 手册页
	名称
	概述
	描述
	可选参数：

	示例
	帮助软件包
	注意事项
	除错
	作者
	许可证
	参见

	debmake options
	Shortcut options (-a, -i)
	debmake -b
	debmake -cc
	Snapshot upstream tarball (-d, -t)
	debmake -j
	debmake -k
	debmake -P
	debmake -T
	debmake -x

